Ir al contenido

Documat


Normalizers of sets of components in fusion systems

  • Oliver, Bob [1]
    1. [1] Université Sorbonne Paris Nord
  • Localización: Publicacions matematiques, ISSN 0214-1493, Vol. 67, Nº 0, 2023, págs. 795-818
  • Idioma: inglés
  • DOI: 10.5565/publmat6722312
  • Enlaces
  • Resumen
    • We describe some new ways to construct saturated fusion subsystems, including, as a special case, the normalizer of a set of components of the ambient fusion system. This was motivated in part by Aschbacher’s construction of the normalizer of one component, and in part by joint work with three other authors where we had to construct the normalizer of all of the components.

  • Referencias bibliográficas
    • M. Aschbacher, The generalized Fitting subsystem of a fusion system, Mem. Amer. Math. Soc. 209(986) (2011), 110 pp. DOI: 10.1090/S0065-9266-2010-00621-5
    • M. Aschbacher, On fusion systems of component type, Mem. Amer. Math. Soc. 257(1236) (2019), 182 pp. DOI: 10.1090/memo/1236
    • M. Aschbacher, R. Kessar, and B. Oliver, “Fusion Systems in Algebra and Topology”, London Mathematical Society Lecture Note Series 391, Cambridge University...
    • C. Broto, N. Castellana, J. Grodal, R. Levi, and B. Oliver, Subgroup families controlling p-local finite groups, Proc. London Math. Soc. (3)...
    • C. Broto, R. Levi, and B. Oliver, The homotopy theory of fusion systems, J. Amer. Math. Soc. 16(4) (2003), 779–856. DOI: 10.1090/S0894-0347-03-00434-X
    • C. Broto, J. Møller, B. Oliver, and A. Ruiz, Realizability and tameness of fusion systems, Preprint (2021). arXiv:2102.08278v3
    • D. A. Craven, “The Theory of Fusion Systems. An Algebraic Approach”, Cambridge Studies in Advanced Mathematics 131, Cambridge University Press, Cambridge,...
    • D. Gorenstein, “Finite Groups”, Harper & Row, Publishers, New YorkLondon, 1968.
    • B. Oliver, A Krull–Remak–Schmidt theorem for fusion systems, Fund. Math. 259(3) (2022), 287–312. DOI: 10.4064/fm160-5-2022
    • L. Puig, Frobenius categories, J. Algebra 303(1) (2006), 309–357. DOI: 10.1016/ j.jalgebra.2006.01.023
    • K. Roberts and S. Shpectorov, On the definition of saturated fusion systems, J. Group Theory 12(5) (2009), 679–687. DOI: 10.1515/JGT.2009.003
    • R. Stancu, Equivalent definitions of fusion systems, Preprint (2004).

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno