Ir al contenido

Documat


Logarithmic Hardy-Littlewood-Sobolev inequality on pseudo-Einstein 3-manifolds and the logarithmic Robin mass

  • Autores: Ali Maalaoui
  • Localización: Publicacions matematiques, ISSN 0214-1493, Vol. 67, Nº 0, 2023, págs. 515-540
  • Idioma: inglés
  • DOI: 10.5565/publmat6722302
  • Enlaces
  • Resumen
    • Given a three-dimensional pseudo-Einstein CR manifold (M, T1,0M, θ),vwe study the existence of a contact structure conformal to θ for which the logarithmic Hardy–Littlewood–Sobolev (LHLS) inequality holds. Our approach closely follows [30] in the Riemannian setting, yet the differential operators that we are dealing with are of very different nature. For this reason, we introduce the notion of Robin mass as the constant term appearing in the expansion of the Green’s function of the P0-operator. We show that the LHLS inequality appears when we study the variation of the total mass under conformal change. This can be tied to the value of the regularized Zeta function of the operator at 1 and hence we prove a CR version of the results in [27]. We also exhibit an Aubin-type result guaranteeing the existence of a minimizer for the total mass which yields the classical LHLS inequality.

  • Referencias bibliográficas
    • T. Aubin, Equations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire, J. Math. Pures Appl. (9) 55(3) (1976),...
    • W. Beckner, Sharp Sobolev inequalities on the sphere and the Moser–Trudinger inequality, Ann. of Math. (2) 138(1) (1993), 213–242. DOI: 10.2307/2946638
    • L. Boutet de Monvel and V. Guillemin, “The Spectral Theory of Toeplitz Operators”, Annals of Mathematics Studies 99, Princeton University...
    • T. P. Branson, L. Fontana, and C. Morpurgo, Moser–Trudinger and Beckner–Onofri’s inequalities on the CR sphere, Ann. of Math. (2) 177(1) (2013),...
    • T. Branson and A. R. Gover, Conformally invariant operators, differential forms, cohomology and a generalisation of Q-curvature, Comm. Partial...
    • E. Carlen and M. Loss, Competing symmetries, the logarithmic HLS inequality and Onofri’s inequality on Sn, Geom. Funct. Anal. 2(1) (1992),...
    • J. S. Case, S. Chanillo, and P. Yang, A remark on the kernel of the CR Paneitz operator, Nonlinear Anal. 126 (2015), 153–158. DOI: 10.1016/j.na.2015.04.001
    • J. S. Case, J.-H. Cheng, and P. Yang, An integral formula for the Q-prime curvature in 3-dimensional CR geometry, Proc. Amer. Math. Soc. 147(4)...
    • J. S. Case, C.-Y. Hsiao, and P. Yang, Extremal metrics for the Q0 -curvature in three dimensions, J. Eur. Math. Soc. (JEMS) 21(2) (2019),...
    • J. S. Case and P. Yang, A Paneitz-type operator for CR pluriharmonic functions, Bull. Inst. Math. Acad. Sin. (N.S.) 8(3) (2013), 285–322.
    • S.-Y. A. Chang, Conformal invariants and partial differential equations, Bull. Amer. Math. Soc. (N.S.) 42(3) (2005), 365–393. DOI: 10.1090/S0273-0979-05-01058-X
    • S.-C. Chang, T.-J. Kuo, and T. Saotome, Global existence and convergence for the CR Q-curvature flow in a closed strictly pseudoconvex CR...
    • S.-Y. A. Chang and P. C. Yang, Extremal metrics of zeta function determinants on 4-manifolds, Ann. of Math. (2) 142(1) (1995), 171–212. DOI:...
    • S. Chanillo, H.-L. Chiu, and P. Yang, Embeddability for 3-dimensional Cauchy–Riemann manifolds and CR Yamabe invariants, Duke Math. J. 161(15) (2012),...
    • J.-H. Cheng, A. Malchiodi, and P. Yang, A positive mass theorem in three dimensional Cauchy–Riemann geometry, Adv. Math. 308 (2017), 276–347. DOI:...
    • C. Fefferman and C. R. Graham, Q-curvature and Poincar´e metrics, Math. Res. Lett. 9(2-3) (2002), 139–151. DOI: 10.4310/MRL.2002.v9.n2.a2
    • G. B. Folland and E. M. Stein, Estimates for the ∂¯b complex and analysis on the Heisenberg group, Comm. Pure Appl. Math. 27(4) (1974), 429–522. DOI:...
    • R. L. Frank and E. H. Lieb, Sharp constants in several inequalities on the Heisenberg group, Ann. of Math. (2) 176(1) (2012), 349–381. DOI: 10.4007/annals.2012.176.1.6
    • C. R. Graham, R. Jenne, L. J. Mason, and G. A. J. Sparling, Conformally invariant powers of the Laplacian, I: Existence, J. London Math. Soc....
    • K. Hirachi, Scalar pseudo-Hermitian invariants and the Szeg¨o kernel on threedimensional CR manifolds, in: “Complex Geometry” (Osaka, 1990),...
    • P. T. Ho, Prescribing the Q0-curvature in three dimension, Discrete Contin. Dyn. Syst. 39(4) (2019), 2285–2294. DOI: 10.3934/dcds.2019096
    • C.-Y. Hsiao, On CR Paneitz operators and CR pluriharmonic functions, Math. Ann. 362(3-4) (2015), 903–929. DOI: 10.1007/s00208-014-1151-2
    • D. Jerison and J. M. Lee, The Yamabe problem on CR manifolds, J. Differential Geom. 25(2) (1987), 167–197. DOI: 10.4310/jdg/1214440849
    • J. M. Lee, Pseudo-Einstein structures on CR manifolds, Amer. J. Math. 110(1) (1988), 157–178. DOI: 10.2307/2374543
    • E. H. Lieb, Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities, Ann. of Math. (2) 118(2) (1983), 349–374. DOI: 10.2307/2007032
    • A. Maalaoui, Prescribing the Q0-curvature on pseudo-Einstein CR 3-manifolds, Preprint (2019). arXiv:1904.09971
    • C. Morpurgo, The logarithmic Hardy–Littlewood–Sobolev inequality and extremals of zeta functions on Sn, Geom. Funct. Anal. 6(1) (1996), 146–171. DOI:...
    • C. Morpurgo, Zeta functions on S2, in: “Extremal Riemann Surfaces” (San Francisco, CA, 1995), Contemp. Math. 201, Amer. Math. Soc., Providence,...
    • C. Morpurgo, Sharp inequalities for functional integrals and traces of conformally invariant operators, Duke Math. J. 114(3) (2002), 477–553....
    • K. Okikiolu, Extremals for logarithmic Hardy–Littlewood–Sobolev inequalities on compact manifolds, Geom. Funct. Anal. 17(5) (2008), 1655–1684....
    • D. H. Phong and E. M. Stein, Estimates for the Bergman and Szeg¨o projections on strongly pseudo-convex domains, Duke Math. J. 44(3) (1977),...
    • R. Ponge, Noncommutative residue for Heisenberg manifolds. Applications in CR and contact geometry, J. Funct. Anal. 252(2) (2007), 399–463....
    • R. S. Ponge, Heisenberg calculus and spectral theory of hypoelliptic operators on Heisenberg manifolds, Mem. Amer. Math. Soc. 194(906) (2008),...
    • J. Steiner, Green’s functions, spectral invariants, and a positive mass on spheres, Thesis (Ph.D.)-University of California, San Diego (2003).
    • J. Steiner, A geometrical mass and its extremal properties for metrics on S2, Duke Math. J. 129(1) (2005), 63–86. DOI: 10.1215/S0012-7094-04-12913-6

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno