Ir al contenido

Documat


On finite GK-dimensional Nichols algebras of diagonal type: rank 3 and Cartan type

  • Angiono, Iván [1] ; García Iglesias, Agustín [1]
    1. [1] Universidad Nacional de Córdoba

      Universidad Nacional de Córdoba

      Argentina

  • Localización: Publicacions matematiques, ISSN 0214-1493, Vol. 67, Nº 0, 2023, págs. 757-793
  • Idioma: inglés
  • DOI: 10.5565/publmat6722311
  • Enlaces
  • Resumen
    • This paper contributes to the proof of the conjecture posed in [5], stating that a Nichols algebra of diagonal type with finite Gelfand–Kirillov dimension has a finite (generalized) root system. We prove the conjecture assuming that the rank is 3 or that the braiding is of Cartan type.

  • Referencias bibliográficas
    • N. Andruskiewitsch, An introduction to Nichols algebras, in: “Quantization, Geometry and Noncommutative Structures in Mathematics and Physics”,...
    • N. Andruskiewitsch and I. E. Angiono, On Nichols algebras with generic braiding, in: “Modules and Comodules”, Trends Math., Birkhäuser Verlag, Basel,...
    • N. Andruskiewitsch and I. Angiono, On finite dimensional Nichols algebras of diagonal type, Bull. Math. Sci. 7(3) (2017), 353–573. DOI: 10.1007/s13373-017-0113-x
    • N. Andruskiewitsch, I. Angiono, and I. Heckenberger, On finite GK-dimensional Nichols algebras of diagonal type, in: “Tensor Categories and...
    • N. Andruskiewitsch, I. Angiono, and I. Heckenberger, On finite GK-dimensional Nichols algebras over abelian groups, Mem. Amer. Math. Soc....
    • N. Andruskiewitsch, I. Angiono, and M. Yakimov, Poisson orders on large quantum groups, Preprint (2020). arXiv:2008.11025v4.
    • N. Andruskiewitsch and G. Sanmarco, Finite GK-dimensional pre-Nichols algebras of quantum linear spaces and of Cartan type, Trans. Amer. Math....
    • N. Andruskiewitsch and H.-J. Schneider, Finite quantum groups and Cartan matrices, Adv. Math. 154(1) (2000), 1–45. DOI: 10.1006/aima.1999.1880.
    • I. Angiono, E. Campagnolo, and G. Sanmarco, Finite GK-Dimensional pre-Nichols algebras of super and standard type, Preprint (2020). arXiv: 2009.04863v1
    • L. Carbone, S. Chung, L. Cobbs, R. McRae, D. Nandi, Y. Naqvi, and D. Penta, Classification of hyperbolic Dynkin diagrams, root lengths and Weyl...
    • I. Heckenberger, The Weyl groupoid of a Nichols algebra of diagonal type, Invent. Math. 164(1) (2006), 175–188. DOI: 10.1007/s00222-005-0474-8
    • I. Heckenberger, Classification of arithmetic root systems of rank 3, in: “Proceedings of the XVIth Latin American Algebra Colloquium (Spanish)”,...
    • I. Heckenberger, Rank 2 Nichols algebras with finite arithmetic root system, Algebr. Represent. Theory 11(2) (2008), 115–132. DOI: 10.1007/s10468-007-9060-7
    • I. Heckenberger, Classification of arithmetic root systems., Adv. Math. 220(1) (2009), 59–124. DOI: 10.1016/j.aim.2008.08.005
    • I. Heckenberger and H.-J. Schneider, Root systems and Weyl groupoids for Nichols algebras, Proc. Lond. Math. Soc. (3) 101(3) (2010), 623–654. DOI:...
    • V. G. Kac, “Infinite-Dimensional Lie Algebras”, Third edition, Cambridge University Press, Cambridge, 1990. DOI: 10.1017/CBO9780511626234
    • V. K. Kharchenko, A quantum analogue of the Poincar´e–Birkhoff–Witt theorem, Algebra and Logic 38(4) (1999), 259–276. DOI: 10.1007/BF02671731
    • V. K. Kharchenko, PBW-bases of coideal subalgebras and a freeness theorem, Trans. Amer. Math. Soc. 360(10) (2008), 5121–5143. DOI: 10.1090/S0002-9947-08-04483-8
    • G. R. Krause and T. H. Lenagan, “Growth of Algebras and Gelfand–Kirillov Dimension”, Revised edition, Graduate Studies in Mathematics 22,...
    • M. Rosso, Quantum groups and quantum shuffles, Invent. Math. 133(2) (1998), 399–416. DOI: 10.1007/s002220050249

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno