Ir al contenido

Documat


On generic flag varieties for odd spin groups

  • Karpenko, Nikita A. [1]
    1. [1] University of Alberta

      University of Alberta

      Canadá

  • Localización: Publicacions matematiques, ISSN 0214-1493, Vol. 67, Nº 0, 2023, págs. 743-756
  • Idioma: inglés
  • DOI: 10.5565/publmat6722310
  • Enlaces
  • Resumen
    • For the spin group G = Spin2n+1 with arbitrary n, a generic G-torsor E over a field, and a parabolic subgroup P ⊂ G, we consider the generic flag variety E/P and describe its Chow ring modulo torsion. This description determines the index of E/P, completing results of [3], where the index has been determined for most P.

  • Referencias bibliográficas
    • V. Chernousov and A. Merkurjev, Essential dimension of spinor and Clifford groups, Algebra Number Theory 8(2) (2014), 457–472. DOI: 10.2140/ant.2014.8.457
    • M. Demazure, D´esingularisation des vari´et´es de Schubert g´en´eralis´ees, Ann. Sci. Ecole Norm. Sup. (4) 7(1) (1974), 53–88. DOI: 10.24033/asens.1261
    • R. A. Devyatov, N. A. Karpenko, and A. S. Merkurjev, Maximal indexes of flag varieties for spin groups, Forum Math. Sigma 9 (2021), Paper...
    • R. Elman, N. Karpenko, and A. Merkurjev, “The Algebraic and Geometric Theory of Quadratic Forms”, American Mathematical Society Colloquium...
    • S. Garibaldi, V. Petrov, and N. Semenov, Shells of twisted flag varieties and the Rost invariant, Duke Math. J. 165(2) (2016), 285–339. DOI:...
    • P. Guillot, The Chow rings of G2 and Spin(7), J. Reine Angew. Math. 2007(604) (2007), 137–158. DOI: 10.1515/CRELLE.2007.021
    • N. A. Karpenko, Unitary grassmannians, J. Pure Appl. Algebra 216(12) (2012), 2586–2600. DOI: 10.1016/j.jpaa.2012.03.024
    • N. A. Karpenko, Around 16-dimensional quadratic forms in I3q, Math. Z. 285(1-2) (2017), 433–444. DOI: 10.1007/s00209-016-1714-x
    • N. A. Karpenko, Chow ring of generic flag varieties, Math. Nachr. 290 (16) (2017), 2641–2647. DOI: 10.1002/mana.201600529
    • N. A. Karpenko, On generic quadratic forms, Pacific J. Math. 297(2) (2018), 367–380. DOI: 10.2140/pjm.2018.297.367
    • N. A. Karpenko and A. S. Merkurjev, Canonical p-dimension of algebraic groups, Adv. Math. 205(2) (2006), 410–433. DOI: 10.1016/j.aim.2005.07.013
    • I. A. Panin, On the algebraic K-theory of twisted flag varieties, K-Theory 8(6) (1994), 541–585. DOI: 10.1007/BF00961020
    • L. A. M. Rojas, The Chow ring of the classifying space of Spin8, Thesis (Ph.D.) (2006). Available on http://www.matfis.uniroma3.it/Allegati/Dottorato/TESI/molina/TesiMolina.pdf.
    • B. Totaro, The Chow ring of a classifying space, in: “Algebraic K-Theory” (Seattle, WA, 1997), Proc. Sympos. Pure Math. 67, Amer. Math. Soc.,...
    • B. Totaro, The torsion index of the spin groups, Duke Math. J. 129(2) (2005), 249–290. DOI: 10.1215/S0012-7094-05-12923-4

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno