Ir al contenido

Documat


Qualitative Analysis for an HIV Infection Model with Caspase-1-Mediated Pyroptosis of the Predominance: Threshold Dynamics and Traveling Waves

  • Autores: Ran Zhang, Jiangxue Xu, Jinliang Wang
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 22, Nº 4, 2023
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, we investigate the global threshold-type result and traveling waves for a general HIV infection model involving CD4+ T cell death caused by caspase-1- mediated pyroptosis of the predominance. We first give the well-posedness of the model and establish the existence of a global attractor. In a bounded domain, the basic reproduction number, denoted by 0, is identified as a threshold parameter for indicating whether the infection occurs or not. Specifically, if 0 < 1, then the system admits a globally asymptotically stable infection-free steady state; if 0 > 1, the system is uniformly persistent. In an unbounded domain and homogeneous environment, we find that if 0 > 1 and wave speed is large enough, the system admits traveling wave solutions.

  • Referencias bibliográficas
    • 1. Bai, N., Xu, R.: Modelling of HIV viral load and 2-LTR dynamics during high active antiretroviral therapy in a heterogeneous environment....
    • 2. Beltman, J.B., Maree, A.F.M., Lynch, J.N., Miller, M.J., de Boer, R.J.: Lymph node topology dictates T cell migration behavior. J. Exp....
    • 3. Chen, W., Teng, Z., Zhang, L.: Global dynamics for a drug-sensitive and drug-resistant mixed strains of HIV infection model with saturated...
    • 4. Cox, A.L., Siliciano, R.F.: HIV: not-so-innocent bystanders. Nature 505, 492–493 (2014)
    • 5. Culshaw, R.V., Ruan, S.: A delay-differential equation model of HIV infection of CD4+ T-cells. Math. Biosci. 165, 27–39 (2000)
    • 6. Diekmann, O., Heesterbeek, J.A.P., Metz, J.A.J.: On the definition and the computation of the basic reproduction ratio r0 in the models...
    • 7. Doitsh, G., Galloway, N.L.K., Geng, X., Yang, Z., Monroe, K.M., Zepeda, O., Hunt, P.W., Hatano, H., Sowinski, S., Muñoz-Arias, I., Greene,...
    • 8. Gao, M., Jiang, D., Hayat, T.: Qualitative analysis of an HIV/AIDS model with treatment and nonlinear perturbation. Qual. Theor. Dyn. Syst....
    • 9. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics, vol. 224. Springer, Berlin...
    • 10. Gourley, S.A., Britton, N.F.: A predator–prey reaction–diffusion system with nonlocal effects. J. Math. Biol. 34, 297–333 (1996)
    • 11. Graw, F., Perelson, A.S.: Spatial aspects of HIV infection. In: Ledzewicz, U., Schättler, H., Friedman, A., Kashdan, E. (eds.) Mathematical...
    • 12. Graziano, F.M., Kettoola, S.Y., Munshower, J.M., Stapleton, J.T., Towfic, G.J.: Effect of spatial distribution of T-Cells and HIV load...
    • 13. Guo, Z., Wang, F.B., Zou, X.: Threshold dynamics of an infective disease model with a fixed latent period and non-local infections. J....
    • 14. Hale, J.K.: Asymptotic Behavior of Dissipative Systems. Mathematical Surveys and Monographs, vol. 25. American Mathematical Society, Providence...
    • 15. Huang, G., Liu, X., Takeuchi, Y.: Lyapunov functions and global stability for age-structured HIV infection model. SIAM J. Appl. Math....
    • 16. Iwami, S., Miura, T., Nakaoka, S., Takeuchi, Y.: Immune impairment in HIV infection: existence of risky and immunodeficiency thresholds....
    • 17. Korobeinikov, A.: Global properties of basic virus dynamics models. Bull. Math. Biol. 66, 879–883 (2004)
    • 18. Lai, X., Zou, X.: Modeling HIV-1 virus dynamics with both virus-to-cell infection and cell-to-cell transmission. SIAM J. Appl. Math. 74,...
    • 19. Liu, Q.: Analysis of a stochastic HIV model with cell-to-cell transmission and Ornstein–Uhlenbeck process. J. Math. Phys. 64, 012702 (2023)
    • 20. Lou, Y., Zhao, X.Q.: A reaction–diffusion malaria model with incubation period in the vector population. J. Math. Biol. 62, 543–568 (2011)
    • 21. Magal, P., Zhao, X.Q.: Global attractors and steady states for uniformly persistent dynamical systems. SIAM J. Math. Anal. 37, 251–275...
    • 22. Martin, R.J., Smith, H.L.: Abstract functional differential equations and reaction–diffusion systems. T. Am. Math. Soc. 321, 1–44 (1990)
    • 23. Murphy, K.M., Weaver, C., Berg, L.J.: Janeway’s Immunobiology, 10th edn. W. W. Norton & Company, New York (2022)
    • 24. Nowak, M.A., Bonhoeffer, S., Hill, A.M., Boehme, R., Thomas, H.C., McDade, H.: Viral dynamics in hepatitis B virus infection. Proc. Natl....
    • 25. Pazy, A.: Semigroups of Linear Operators and Application to Partial Differential Equations. Applied Mathematical Sciences, vol. 44. Springer,...
    • 26. Perelson, A.S., Nelson, P.W.: Mathematical analysis of HIV-1 dynamics in vivo. SIAM Rev. 41, 3–44 (1999)
    • 27. Ren, X., Tian, Y., Liu, L., Liu, X.: A reaction–diffusion within-host HIV model with cell-to-cell transmission. J. Math. Biol. 76, 1831–1872...
    • 28. Schroder, K., Tschopp, J.: The inflammasomes. Cell 140, 821–832 (2010)
    • 29. Shu, H., Ma, Z., Wang, X.S.: Threshold dynamics of a nonlocal and delayed cholera model in a spatially heterogeneous environment. J. Math....
    • 30. Smith, H.: Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems. Mathematical Surveys and...
    • 31. Smith, H.L., Zhao, X.Q.: Robust persistence for semidynamical systems. Nonlinear Anal. 47, 6169– 6179 (2001)
    • 32. Thieme, H.R.: Convergence results and a Poincare–Bendixson trichotomy for asymptotically ´ autonomous differential equations. J. Math....
    • 33. Thieme, H.R.: Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity. SIAM J. Appl....
    • 34. Thieme, H.R., Zhao, X.Q.: A non-local delayed and diffusive predator–prey model. Nonlinear Anal. Real World Appl. 2, 145–160 (2001)
    • 35. UNAIDS: In Danger: UNAIDS Global AIDS Update 2022. Joint United Nations Programme on HIV/AIDS, Geneva (2022)
    • 36. van den Driessche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission....
    • 37. Wang, J., Guo, M., Liu, X., Zhao, Z.: Threshold dynamics of HIV-1 virus model with cell-to-cell transmission, cell-mediated immune responses...
    • 38. Wang, J., Zhang, R., Gao, Y.: Global threshold dynamics of an infection age-space structured HIV infection model with Neumann boundary...
    • 39. Wang, J., Zhang, R., Kuniya, T.: Global dynamics for a class of age-infection HIV models with nonlinear infection rate. J. Math. Anal....
    • 40. Wang, W., Feng, Z.: Global dynamics of a diffusive viral infection model with spatial heterogeneity. Nonlinear Anal. RWA 72, 103763 (2023)
    • 41. Wang, W., Zhang, T.: Caspase-1-mediated pyroptosis of the predominance for driving CD4+ T cells death: a nonlocal spatial mathematical...
    • 42. Wang, W., Zhao, X.Q.: A nonlocal and time-delayed reaction-diffusion model of dengue transmission. SIAM J. Appl. Math. 71, 147–168 (2011)
    • 43. Wang, W., Zhao, X.Q.: Basic reproduction numbers for reaction–diffusion epidemic model. SIAM J. Appl. Dyn. Syst. 11, 1652–1673 (2012)
    • 44. Wang, Z.C., Wu, J.: Travelling waves of a diffiusive Kermack–McKendrick epidemic model with non-local delayed transmission. Proc. Roy....
    • 45. Wang, Z.C., Wu, J., Liu, R.: Traveling waves of Avian influenza spread. Proc. Am. Math. Soc. 140, 3931–3946 (2012)
    • 46. Wu, P., Zhao, H.: Dynamical analysis of a nonlocal delayed and diffusive HIV latent infection model with spatial heterogeneity. J. Franklin...
    • 47. Wu, P., Zhao, H.: Mathematical analysis of an age-structured HIV/AIDS epidemic model with HAART and spatial diffusion. Nonlinear Anal....
    • 48. Wu, J.: Theory and Applications of Partial Functional Differential Equations. Applied Mathematical Sciences, vol. 119. Springer, New York...
    • 49. Yang, Y., Zou, L., Ruan, S.: Global dynamics of a delayed within-host viral infection model with both virus-to-cell and cell-to-cell transmissions....
    • 50. Zhao, L., Wang, Z.C., Ruan, S.: Traveling wave solutions in a two-group epidemic model with latent period. Nonlinearity 30, 1287–1325...
    • 51. Zhao, X.-Q.: Dynamical Systems in Population Biology. CMS Books in Mathematics, Springer, Cham (2017)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno