Ir al contenido

Documat


Normalized Ground States and Multiple Solutions for Nonautonomous Fractional Schrödinger Equations

  • Autores: Chen Yang, Shu-Bin Yu, Chun-Lei Tang
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 22, Nº 4, 2023
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, we consider the following fractional Schrödinger equations with prescribed L2-norm constraint:

      (−)su = λu + h(εx) f (u) in RN , RN |u| 2dx = a2, where 0 < s < 1, N ≥ 3, a,ε > 0, h ∈ C(RN , R+) and f ∈ C(R, R). In the mass subcritical case but under general assumptions on f , we prove the multiplicity of normalized solutions to this problem. Specifically, we show that the number of normalized solutions is at least the number of global maximum points of h when ε is small enough. Before that, without any restrictions on ε and the number of global maximum points, the existence of normalized ground states can be determined. In this sense, by studying the relationship between h0 := inf x∈RN h(x) and h∞ := lim|x|→∞ h(x), we establish new results on the existence of normalized ground states for nonautonomous elliptic equations.

  • Referencias bibliográficas
    • 1. Alves, C.: On existence of multiple normalized solutions to a class of elliptic problems in whole RN . Z. Angew. Math. Phys. 73, 97 (2022)
    • 2. Alves, C., Ji, C., Miyagaki, O.: Normalized solutions for a Schrödinger equation with critical growth in RN . Calc. Var. Partial Differ....
    • 3. Appolloni, L., Secchi, S.: Normalized solutions for the fractional NLS with mass supercritical nonlinearity. J. Differ. Equ. 286, 248–283...
    • 4. Applebaum, D.: Lévy processes-from probability to finance and quantum groups. Not. Am. Math. Soc. 51, 1336–1347 (2004)
    • 5. Bieganowski, B., Mederski, J.: Normalized ground states of the nonlinear Schrödinger equation with at least mass critical growth. J. Funct....
    • 6. Boulenger, T., Himmelsbach, D., Lenzmann, E.: Blowup for fractional NLS. J. Funct. Anal. 271, 2569–2603 (2016)
    • 7. Brézis, H., Lieb, E.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88, 486–490...
    • 8. Bucur, C., Valdinoci, E.: Nonlocal Diffusion and Applications. Springer International Publishing, Switzerland (2016)
    • 9. Cabré, X., Sire, Y.: Nonlinear equations for fractional Laplacians: I. regularity, maximum principles, and Hamiltonian estimates. Ann....
    • 10. Cao, D., Noussair, E.: Multiplicity of positive and nodal solutions for nonlinear elliptic problem in RN . Ann. Inst. H. Poincaré Anal....
    • 11. Du, M., Tian, L., Wang, J., Zhang, F.: Existence of normalized solutions for nonlinear fractional Schrödinger equations with trapping...
    • 12. Felmer, P., Quaas, A., Tan, J.: Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian. Proc. Roy. Soc. Edinb....
    • 13. Guo, Z., Luo, S., Zou, W.: On critical systems involving fractional Laplacian. J. Math. Anal. Appl. 446, 681–706 (2017)
    • 14. Jeanjean, L.: Existence of solutions with prescribed norm for semilinear elliptic equations. Nonlinear Anal. 27, 1633–1659 (1997)
    • 15. Jeanjean, L., Le, T.: Multiple normalized solutions for a Sobolev critical Schrödinger equation. Math. Ann. 384, 101–134 (2022)
    • 16. Liu, L., Teng, K., Yang, J., Chen, H.: Concentration behaviour of normalized ground states of the mass critical fractional Schrödinger...
    • 17. Luo, H., Zhang, Z.: Normalized solutions to the fractional Schrödinger equations with combined nonlinearities. Calc. Var. Partial Differ....
    • 18. Mawhin, J., Willem, M.: Critical Point Theory and Hamiltonian Systems, Applied Mathematical Sciences. New York Inc., Springer (1989)
    • 19. Molle, R., Riey, G., Verzini, G.: Normalized solutions to mass supercritical Schrödinger equations with negative potential. J. Differ....
    • 20. Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)
    • 21. Peng, S., Xia, A.: Normalized solutions of supercritical nonlinear fractional schrödinger equation with potential. Commun. Pure. Appl....
    • 22. Pozrikidis, C.: The Fractional Laplacian. Taylor & Francis Group, LLC (2016)
    • 23. Servadei, R., Raffaella, E.: Variational methods for non-local operators of elliptic type. Discrete Contin. Dyn. Syst. 33, 2105–2137 (2013)
    • 24. Soave, N.: Normalized ground states for the NLS equation with combined nonlinearities. J. Differ. Equ. 279, 6941–6987 (2020)
    • 25. Soave, N.: Normalized ground states for the NLS equation with combined nonlinearities: The Sobolev critical case. J. Funct. Anal. 279,...
    • 26. Valdinoci, E.: From the long jump random walk to the fractional Laplacian. Bol. Soc. Esp. Mat. Apl. 49, 33–44 (2009)
    • 27. Willem, M.: Minimax Theorems Birkhäuser, Boston, (1996)
    • 28. Yang, J., Yang, J.: Normalized solutions and mass concentration for supercritical nonlinear Schrödinger equations. Sci. China Math. 65,...
    • 29. Yu, S., Tang, C., Zhang, Z.: Normalized solutions of mass subcritical fractional Schrödinger equations in exterior domains. J. Geom. Anal....
    • 30. Zhen, M., Zhang, B.: Normalized ground states for the critical fractional NLS equation with a perturbation. Rev. Mat. Complut. 35, 89–132...
    • 31. Zhang, Z., Zhang, Z.: Normalized solutions of mass subcritical Schrödinger equations in exterior domains. NoDEA Nonlinear Differ. Equ....
    • 32. Zhang, P., Han, Z.: Normalized solutions to a kind of fractional Schrödinger equation with a critical nonlinearity. Z. Angew. Math. Phys....
    • 33. Zhu, X., Cao, D.: The concentration-compactness principle in nonlinear elliptic equations. Acta Math. Sci. 9, 307–328 (1989)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno