Ir al contenido

Documat


Multiplicity of Positive Solutions for a Semilinear Elliptic System with Strongly Coupled Critical Terms and Concave Nonlinearities

  • Xiu Zhou [1] ; Hong-Ying Li [1] ; Jia-Feng Liao [1]
    1. [1] China West Normal University

      China West Normal University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 22, Nº 4, 2023
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, the following semilinear elliptic system involving strongly coupled critical terms and concave nonlinearities is considered ⎧ ⎪⎪⎪⎪⎪⎪⎪⎪⎨ ⎪⎪⎪⎪⎪⎪⎪⎪⎩ −u = η1α1 2∗ |u| α1−2|v| β1 u + η2α2 2∗ |u| α2−2|v| β2 u + a1 |u| q−2u |x| γ , x ∈ , −v = η1β1 2∗ |u| α1 |v| β1−2v + η2β2 2∗ |u| α2 |v| β2−2v + a2 |v| q−2v |x| γ , x ∈ , u,v > 0, x ∈ , u = v = 0, x ∈ ∂, where ⊂ RN (N ≥ 3) is a bounded domain with smooth boundary and 0 ∈ , 1 < q < 2, η1 + η2 > 0, 0 ≤ ηi < +∞, ai > 0, 0 ≤ γ < N + q − q N 2 , αi, βi > 1, αi + βi = 2∗ = 2N N−2 (i = 1, 2) is the critical Sobolev exponent. By the Nehari method and variational method, two positive solutions are obtained which generalizes and improves some corresponding results in the literature

  • Referencias bibliográficas
    • 1. Daoues, A., Hammami, A., Saoudi, K.: Multiplicity results of a nonlocal problem involving concaveconvex nonlinearities. Math. Notes. 109,...
    • 2. Alves, C.O., de Morais Filho, D.C., Souto, M.A.S.: On systems of elliptic equations involving subcritical or critical Sobolev exponents....
    • 3. Cao, D.M., Zhou, H.S.: Multiple positive solutions of nonhomogeneous semilinear elliptic equations in RN . Proc. Roy. Soc. Edinburgh. 126A,...
    • 4. Kang, D.S., Peng, S.J.: Solutions for semilinear elliptic problems with critical Sobolev-hardy exponents and hardy potential. Appl. Math....
    • 5. Kang, D.S.: On the quasilinear elliptic problems with critical Sobolev-hardy exponents and Hardy terms. Nonlinear Anal. 68, 1973–1985 (2008)
    • 6. Kang, D.S., Liu, X.N.: Singularities of solutions to elliptic systems involving different Hardy-type terms. J. Math. Anal. Appl. 468, 757–765...
    • 7. Kang, D.S., Xu, L.S.: A critical surface for the solutions to singular elliptic systems. J. Math. Anal. Appl. 472, 2017–2033 (2019)
    • 8. Kang, D.S., Liu, X.N.: A note on coupled elliptic systems involving different Hardy-type terms. Appl. Math. Lett. 89, 35–40 (2019)
    • 9. Kang, D.S., Liu, X.N.: Double critical surfaces of singular quasilinear elliptic systems. J. Math. Anal. Appl. 483, 123607 (2020)
    • 10. Kang, D.S., Liu, M.R., Xu, L.S.: Critical elliptic systems involving multiple strongly-coupled hardytype terms. Nonlinear Anal. 9, 866–881...
    • 11. Kang, D.S., Ma, Y.H.: Singularities of solutions to elliptic systems involving three critical equations and multiple coupled Hardy-type...
    • 12. da Silva, E.D., Carvalho, M.L.M., Gonçalves, J.V., Goulart, C.: Critical quasilinear elliptic problems using concave-convex nonlinearities....
    • 13. Brézis, H., Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun. Pure Appl....
    • 14. Brézis, H., Lieb, E.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Amer. Math. Soc. 88,...
    • 15. Lin, H.L.: Multiple positive solutions for semilinear elliptic systems. J. Math. Anal. Appl. 391, 107–118 (2012)
    • 16. Fan, H.N.: Multiple positive solutions for semilinear elliptic systems with sign-changing weight. J. Math. Anal. Appl. 409, 399–408 (2014)
    • 17. Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974)
    • 18. Giacomoni, J., Saoudi, K.: Multiplicity of positive solutions for a singular and critical problem. Nonlinear Anal. 71, 4060–4077 (2009)
    • 19. Brown, K.J., Zhang, Y.P.: The Nehari manifold for a semilinear elliptic problem with a sign-changing weight function. J. Diff. Equ. 193,...
    • 20. Brown, K.J., Wu, T.F.: A semilinear elliptic systems involving nonlinear boundary condition and sign-changing weight function. J. Math....
    • 21. Saoudi, K., Kratou, M.: Existence of multiple solutions for a singular and quasilinear equation. Complex. Var. Elliptic. 60, 893–925 (2015)
    • 22. Saoudi, K.: Existence and non-existence of solutions for a singular problem with variable potentials. Electron. J. Differ. Eq. 291, 1–9...
    • 23. Wang, L., Wei, Q.L., Kang, D.S.: Existence and multiplicity of positive solutions to elliptic systems involving critical exponents. J....
    • 24. Cai, M.J., Kang, D.S.: Elliptic systems involving multiple strongly-coupled critical terms. Appl. Math. Lett. 25, 417–422 (2012)
    • 25. Bouchekif, M., Nasri, Y.: On a singular elliptic system at resonance. Ann. Mat. Pura Appl. 189, 227–240 (2010)
    • 26. Kratou, M.: Three solutions for a semilinear elliptic boundary value problem. Proc. Math. Sci. 129, 1–8 (2019)
    • 27. Han, P.G.: Multiple positive solutions of nonhomogeneous elliptic system involving critical Sobolev exponents. Nonlinear Anal. 64, 869–886...
    • 28. Han, P.G.: The effect of the domain topology on the number of positive solutions of elliptic systems involving critical Sobolev exponents....
    • 29. Alotaibi, S.R.M., Saoudi, K.: Regularity and multiplicity of solutions for a nonlocal problem with critical Sobolev-Hardy nonlinearities....
    • 30. Wu, T.F.: The Nehari manifold for a semilinear elliptic system involving sign-changing weight function. Nonlinear Anal. 68, 1733–1745...
    • 31. Wu, T.F.: On semilinear elliptic equations involving concave-convex nonlinearities and sign-changing weight function. J. Math. Anal. Appl....
    • 32. Hsu, T.S.: Multiple positive solutions for a critical quasilinear elliptic system with concave-convex nonlinearities. Nonlinear Anal....
    • 33. Hsu, T.S.: Multiplicity of positive solutions for semilinear elliptic systems. Abstr. Appl. Anal. 2013, 746380 (2013)
    • 34. Hsu, T.S.: Existence and multiplicity of positive solutions to a perturbed singular elliptic system deriving from a strongly coupled critical...
    • 35. Hsu, T.S.: Multiplicity of positive solutions for critical singular elliptic systems with concave-convex nonlinearities. Adv. Nonlinear...
    • 36. Hsu, T.S., Lin, H.L.: Multiple positive solutions for a critical elliptic system with concave-convex nonlinearities. Proc. Roy. Soc. Edinburgh....
    • 37. Huang, Y., Kang, D.S.: On the singular elliptic systems involving multiple critical Sobolev exponents. Nonlinear Anal. 74, 400–412 (2011)
    • 38. Cao, Y.P., Kang, D.S.: Solutions of quasilinear elliptic problems involving a Sobolev exponent and multiple Hardy-type terms. J. Math....
    • 39. Sun, Y.J., Wu, S.P.: An exact estimate result for a class of singular equations with critical exponents. J. Funct. Anal. 260, 1257–1284...
    • 40. Liu, Z.X., Han, P.G.: Existence of solutions for singular elliptic systems with critical exponents. Nonlinear Anal. 69, 2968–2983 (2008)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno