Ir al contenido

Documat


Recopilación de resoluciones del problema de Basilea

  • Vicent Navarro Arroyo [1]
    1. [1] Universitat Politècnica de Catalunya

      Universitat Politècnica de Catalunya

      Barcelona, España

  • Localización: TEMat: Divulgación de trabajos de estudiantes de matemáticas, ISSN-e 2530-9633, Nº. 7, 2023, págs. 27-40
  • Idioma: español
  • Enlaces
  • Resumen
    • español

      El problema de Basilea se basa en hallar si, en efecto, la suma de los inversos de los cuadrados naturales converge y, en caso afirmativo, a qué valor. Este problema fue resuelto, primero, por Euler, pero se han conseguido numerosas pruebas tras él. Recopilaremos algunas de sus demostraciones más importantes y mostraremos la versatilidad de los enfoques hacia este problema señalando el potencial de determinadas teorías (en particular, la teoría de series de Fourier), las demostraciones más insospechadas y directas, así como los puentes que se tienden entre varias áreas de las matemáticas

    • English

      The Basel Problem consists in finding if, actually, the sum of inverse squares of the natural numbers converges and to what value. This problem was first solved by Euler but numerous proofs have been obtained later. We compile some of its most important proofs and show the versatility of approaches to the Basel Problem by pointing out the potential of certain theories (particularly, the Fourier series theory), the most direct and unsuspected proofs, as well as the bridges that are built between various areas of Mathematics.

  • Referencias bibliográficas
    • APOSTOL, Tom M. Mathematical analysis. Second. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1974.
    • APOSTOL, Tom M. “A proof that Euler missed: evaluating𝜁(2) the easy way”. En: The Mathematical Intelligencer 5.3 (1983), págs. 59-60....
    • AYOUB, Raymond. “Euler and the zeta function”. En: American Mathematical Monthly 81 (1974), págs. 1067-1086. ISSN: 0002-9890. https://doi.org/10.2307/2319041.
    • CAUCHY, Augustin-Louis. Cours d’analyse de l’École Royale Polytechnique. Cambridge Library Collection. Cambridge University Press, Cambridge,...
    • CHAPMAN, Robin. Evaluating𝜁(2). 2003. URL: https://empslocal.ex.ac.uk/people/staff/rjchapma/etc/zeta2.pdf (visitado 12-06-2023).
    • CONWAY, John B. Functions of one complex variable. Vol. 11. Graduate Texts in Mathematics. Springer-Verlag, New York-Heidelberg, 1973.
    • KATZNELSON, Yitzhak. An introduction to harmonic analysis. Third. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 2004....
    • LEVEQUE, William Judson. Topics in number theory. Vol. I, II. Dover Publications, Inc., Mineola, NY, 2002. ISBN: 978-0-486-42539-9.
    • PACE, Luigi. “Probabilistically proving that𝜁(2)=π2/6”. En: American Mathematical Monthly 118.7 (2011), págs. 641-643.ISSN: 0002-9890....
    • PROJECT, Supporting Australian Mathematics. Proof of the binomial theorem by mathematical induction. URL: https://amsi.org.au/ESA_Senior_Years/SeniorTopic1/1c/1c_2content_6.html...
    • RANSFORD, T.J. “An elementary proof of ∑∞𝑛=11𝑛2=π26”. En: Eureka. The Archimedeans’ Journal 1982. 42 (1982), págs....
    • REAKES, Kai. A Couple of Proofs of De Moivre’s Theorem. 2008. URL: http://mathsathawthorn.pbworks.com/f/De+Moivre%5C%27s+Theorem+and+my+favourite+piece+of+maths.pdf...
    • RIEMANN, Bernhard. On the Number of Primes less than a Given Magnitude. Trad. por Wilkins, David R. 1998. URL: https://www.claymath.org/wp-content/uploads/2023/04/Wilkins-translation.pdf...
    • RISE TO THE EQUATION. Cauchy’s Proof of the Basel Problem | Pi Squared Over Six (3 blue 1 brown So ME 1 Entry). 21 de ago. de 2021. URL: https://www.youtube.com/watch?v=2jgtAo3ZtfI...
    • SIMONE.Proof that 𝐿𝑝 spaces are complete. Planet Math. 22 de mar. de 2013. URL: https://planetmath.org/ProofThatLpSpacesAreComplete...
    • STILLWELL, John. Mathematics and its history. 3ed. Undergraduate Texts in Mathematics. Springer, New York, 2010. https://doi.org/10.1007/978-1-4419-6053-5.
    • STIRZAKER, David. Elementary probability. Second. Cambridge University Press, Cambridge, 2003. https://doi.org/10.1017/CBO9780511755309.
    • STROMBERG, Karl R. Introduction to classical real analysis. Wadsworth International Mathematics Series. Wadsworth International, Belmont,...
    • SULLIVAN, Brendan W.The Basel Problem. 11 de abr. de 2013. URL: https://www.math.cmu.edu/~bwsulliv/basel-problem.pdf (visitado 12-06-2023).
    • VINBERG, E. B. A course in algebra. Vol. 56. Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2003. https://doi.org/10.1090/gsm/056.
    • YAGLOM, A. M. y YAGLOM, I. M.Challenging mathematical problems with elementary solutions. Vol. 2. Dover Publications, Inc., New York, 1987....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno