Ir al contenido

Documat


Capacity and stability on some Cegrell classes of m-subharmonic functions

  • Hbil, Jawhar [1] ; Zaway, Mohamed [2]
    1. [1] Department of Mathematics Jouf University, P.O. Box: 2014, Sakaka, Saudi Arabia
    2. [2] Department of mathematics, College of science, Shaqra University, P.O. box 1040, Ad-Dwadimi, 1191, Kingdom of Saudi Arabia
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 74, Fasc. 3, 2023, págs. 817-835
  • Idioma: inglés
  • DOI: 10.1007/s13348-022-00374-5
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • The aim of this paper is to show some equivalent conditions to the convergence in m-capacity for a sequence of m-subharmonic functions based on its Hessian measure. As an application, we prove a stability theorem which is analogous to Cegrell and Kołodziej theorem from [14].

  • Referencias bibliográficas
    • El Gasmi, A.: The Dirichlet problem for the complex Hessian operator in the class N_m(\Omega, f). Math. Scand. 127, 287–316 (2021)
    • Sadullaev, A.S., Abdullaev, B.I.: Potential theory in the class of msubharmonic functions. Tr. Mat. Inst. Steklova 279, 166–192 (2012)
    • Bedford, E., Taylor, B.A.: The Dirichlet problem for a complex Monge-Ampère operator. Invent. Math. 37, 1–44 (1976)
    • Lu, H.C.: A variational approach to complex Hessian equations in C^n. J. Math. Anal. Appl. 431(1), 228–259 (2015)
    • H. C. Lu, Equations Hessiennes complexes, Université Paul Sabatier, Toulouse, France (2012),http://thesesups.ups-tlse.fr/1961/
    • Hai, L.M., Trao, N.V., Hong, N.X.: The complex Monge-Ampère equation in unbounded hyperconvex domains in {\mathbb{C} }^n. Complex Var. Elliptic...
    • N.X. Hong, N.V. Trao and T.V. Thuy, Convergence in capacity of plurisubharmonic functions with given boundary values, Inter J Math. (2017);
    • N.X. Hong, N.V. Trao and T.V. Thuy, 28(3). Article ID. 1750018 (14p)
    • Dinew, S., Lu, H.C.: Mixed Hessian inequalities and uniqueness in the class {\cal{E} }(X,\omega, m). Math. Z. 279, 753–766 (2015)
    • Cegrell, U.: Convergence in Capacity. Canad. Math. Bull. 55(2), 242–248 (2012)
    • U. Cegrell, Convergence in capacity, Isaac Newton Institute for Mathematical Sciences preprint series NI01046-NPD (2001)
    • Cegrell, U.: Pluricomplex energy. Acta Math. 180, 187–217 (1998)
    • Cegrell, U.: The general definition of the complex Monge-Ampère operator. Ann. Inst. Fourier (Grenoble) 54, 159–179 (2004)
    • Cegrell, U., Kołodziej, S.: The equation of complex Monge-Ampère type and stability of solutions. Math. Ann. 334, 713–729 (2006)
    • Nguyen, V.T.: Maximal m-subharmonic functions and the Cegrell class {\cal{N} }_m. Indag. Math. 30, 717–739 (2019)
    • Hung, V.V., Phu, N.V.: Hessian measures on m-polar sets and applications to the complex Hessian equations. Complex Var. Elliptic Equ. 8, 1135–1164...
    • Xing, Y.: Convergence in capacity. Ann. Inst. Fourier (Grenoble) 58(5), 1839–1861 (2008)
    • Błocki, Z.: Weak solutions to the complex Hessian equation. Ann. Inst. Fourier (Grenoble) 55(5), 1735–1756 (2005)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno