Ir al contenido

Documat


Necessary and sufficient condition for boundedness of translation operator in de Branges spaces

  • Bellavita, Carlo [1]
    1. [1] University of Milan

      University of Milan

      Milán, Italia

  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 74, Fasc. 3, 2023, págs. 795-815
  • Idioma: inglés
  • DOI: 10.1007/s13348-022-00373-6
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • In the previous work Bellavita (Complex Anal. Oper. Theory 15: 96, 2021) we found some necessary conditions for the boundedness of the translation operator T_\zeta in the de Branges space {{\mathcal {H}}}(E). In that case we made use of the Carleson measures for the associated model space. In this work we start from the Pancherel-Polya inequality in the Paley-Wiener space and from the Bernstein inequality in the de Branges space. This different approach allows us to obtain a new condition, in some cases necessary and sufficient, for the boundedness of T_\zeta in the de Branges space.

  • Referencias bibliográficas
    • Baranov, A.D.: Differentiation in the Branges spaces and embedding theorems. J. Math. Sci. (N. Y.) 101, 2881–2913 (2000)
    • Baranov, A.D.: Bernstein’s inequality in the de Branges spaces and embedding theorems. Amer. Math. Soc. Transl. 209, 21–49 (2003)
    • Baranov, A.D.: Estimate of the L^p-norms of derivatives in spaces of entire functions. J. Math. Sci. (N. Y.) 129, 3927–3943 (2005)
    • Baranov, A.D., Bommier-Hato, H.: De Branges spaces and Fock spaces. Complex Var. Elliptic Equ. 63, 907–930 (2018)
    • Bellavita, C.: Necessary conditions for boundedness of translation operator in de Branges spaces. Complex Anal. Oper. Theory 15, 96 (2021)
    • De Branges, L.: Hilbert spaces of entire functions. N.J. Prentice Hall, Englewood Cliffs (1968)
    • Dyakonov, K.M.: Entire functions of exponential type and model subspaces in H^p. J. Math. Sci. (N. Y.) 71, 2222–2233 (1994)
    • Dyakonov, K.M.: Differentiation in star-invariant subspaces I. Boundedness and compactness. J. Funct. Anal. 192, 364–386 (2002)
    • Dyakonov, K.M.: Differentiation in star-invariant subspaces II. Schatten class criteria. J. Funct. Anal. 192, 387–409 (2002)
    • Garnett, J.: Bounded Analytic Functions. Springer, New York (2007)
    • Kaltenbäck, M., Woracek, H.: Pólya class theory for Hermite-Biehler functions of finite order. J. London Math. Soc. 2(68), 338–354 (2003)
    • Levin, B.Y.: Distribution of zeros of entire functions. Translations of mathematical monographs. American Mathematical Society, Chicago (1980)
    • Levin, B.Y., Lyubarskii, Y., Sodin, M., Tkachenko, V.: Lectures on entire functions. American Mathematical Society, Chicago (1996)
    • Remling, C.: Schrödinger operators and de Branges spaces. J. Funct. Anal. 196, 395–426 (2002)
    • Romanov, R.: Canonical systems and de Branges spaces. arXiv: Complex Variables, (2014)
    • Seip, K.: Interpolation and sampling in spaces of analytic functions. University Lecture Series, American Mathematical Society, Providence...
    • Yosida, K.: Functional analysis. Springer Science, Berlin Heidelberg (1995)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno