Ir al contenido

Documat


Affine semigroups of maximal projective dimension

  • Bhardwaj, Om Prakash [1] ; Goel, Kriti [1] ; Sengupta, Indranath [1]
    1. [1] IIT Gandhinagar, Palaj, Gandhinagar, Gujarat, 382355, India
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 74, Fasc. 3, 2023, págs. 703-727
  • Idioma: inglés
  • DOI: 10.1007/s13348-022-00370-9
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • A submonoid of {\mathbb {N}}^d is of maximal projective dimension ({\text {MPD}}) if the associated affine semigroup ring has the maximum possible projective dimension. Such submonoids have a nontrivial set of pseudo-Frobenius elements. We generalize the notion of symmetric semigroups, pseudo-symmetric semigroups, and row-factorization matrices for pseudo-Frobenius elements of numerical semigroups to the case of {\text {MPD}}-semigroups in {\mathbb {N}}^d. Under suitable conditions, we prove that these semigroups satisfy the generalized Wilf’s conjecture. We prove that the generic nature of the defining ideal of the associated semigroup ring of an {\text {MPD}}-semigroup implies uniqueness of row-factorization matrix for each pseudo-Frobenius element. Further, we give a description of pseudo-Frobenius elements and row-factorization matrices of gluing of {\text {MPD}}-semigroups. We prove that the defining ideal of gluing of {\text {MPD}}-semigroups is never generic.

  • Referencias bibliográficas
    • Assi, A., García-Sánchez, P.A., Ojeda, I.: Frobenius vectors, Hilbert series and gluings of affine semigroups. J. Commut. Algebra 7(3), 317–335...
    • Bhardwaj, O.P., Goel, K., Sengupta, I.: Affine semigroups of maximal projective dimension. Séminaire Lotharingien de Combinatoire 86B(33),...
    • Bresinsky, H.: On prime ideals with generic zero x_{i}=t^{n_{i}}. Proc. Am. Math. Soc. 47, 329–332 (1975)
    • Bresinsky, H., Hoa, L.T.: Minimal generating sets for a family of monomial curves in {\bf A}^4. In: Commutative Algebra and Algebraic Geometry...
    • Cavaliere, M.P., Niesi, G.: On monomial curves and Cohen–Macaulay type. Manuscr. Math. 42(2–3), 147–159 (1983)
    • Charalambous, H., Katsabekis, A., Thoma, A.: Minimal systems of binomial generators and the indispensable complex of a toric ideal, pp. 1–10...
    • Charalambous, H., Katsabekis, A., Thoma, A.: Minimal systems of binomial generators and the indispensable complex of a toric ideal. Proc....
    • Díaz-Ramírez, J.D., García-García, J.I., Marín-Aragón, D., Vigneron-Tenorio, A.: Characterizing affine {\cal{C}}-semigroups, pp. 1–15 (2021)....
    • Eto, K.: Almost Gorenstein monomial curves in affine four space. J. Algebra 488, 362–387 (2017)
    • Eto, K.: On row-factorization matrices. J. Algebra Number Theory Adv. Appl. 17(2), 93–108 (2017)
    • Eto, K.: Generic Toric Ideals and Row-Factorization Matrices in Numerical Semigroups, pp. 83–91. Springer, Cham (2020)
    • García-García, J.I., Marín-Aragón, D., Vigneron-Tenorio, A.: An extension of Wilf’s conjecture to affine semigroups. Semigroup Forum 96(2),...
    • García-García, J.I., Ojeda, I., Rosales, J.C., Vigneron-Tenorio, A.: On pseudo-Frobenius elements of submonoids of \mathbb{{N}^{d}}. Collect....
    • Gasharov, V., Peeva, I., Welker, V.: Rationality for generic toric rings. Math. Z. 233(1), 93–102 (2000)
    • Gimenez, P., Srinivasan, H.: The structure of the minimal free resolution of semigroup rings obtained by gluing. J. Pure Appl. Algebra 223(4),...
    • Grayson, D.R., Stillman, M.E.: Macaulay2, a software system for research in algebraic geometry. http://www.math.uiuc.edu/Macaulay2/
    • Herzog, J., Watanabe, K.: Almost symmetric numerical semigroups. Semigroup Forum 98(3), 589–630 (2019)
    • Jafari, R., Yaghmaei, M.: Type and conductor of simplicial affine semigroups. J. Pure Appl. Algebra 226(3), 106844 (2022)
    • Miller, E., Sturmfels, B.: Combinatorial Commutative Algebra. Graduate Texts in Mathematics, vol. 227. Springer, New York (2005)
    • Moscariello, A.: On the type of an almost Gorenstein monomial curve. J. Algebra 456, 266–277 (2016)
    • Nari, H.: Symmetries on almost symmetric numerical semigroups. Semigroup Forum 86(1), 140–154 (2013)
    • Numata, T.: Almost symmetric numerical semigroups generated by four elements. Proc. Inst. Nat. Sci. Nihon Univ. 48, 197–207 (2013)
    • Peeva, I., Sturmfels, B.: Generic lattice ideals. J. Am. Math. Soc. 11(2), 363–373 (1998)
    • Rosales, J.C.: On presentations of subsemigroups of {N}^n. Semigroup Forum 55(2), 152–159 (1997)
    • Rosales, J.C., García-Sánchez, P.A.: Numerical Semigroups. Developments in Mathematics, vol. 20. Springer, New York (2009)
    • Sabzrou, H., Rahmati, F.: The Frobenius number and a-invariant. Rocky Mt. J. Math. 36(6), 2021–2026 (2006)
    • Saha, J., Sengupta, I., Srivastava, P.: Projective closures of affine monomial curves, pp. 1–23 (2021). arXiv preprint arXiv:2101.12440
    • The GAP Group. GAP—Groups, Algorithms, and Programming, Version 4.11.1 (2021)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno