Ir al contenido

Documat


Affine semigroups of maximal projective dimension

  • Bhardwaj, Om Prakash [1] ; Goel, Kriti [1] ; Sengupta, Indranath [1]
    1. [1] IIT Gandhinagar, Palaj, Gandhinagar, Gujarat, 382355, India
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 74, Fasc. 3, 2023, págs. 703-727
  • Idioma: inglés
  • DOI: 10.1007/s13348-022-00370-9
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • A submonoid of {\mathbb {N}}^d is of maximal projective dimension ({\text {MPD}}) if the associated affine semigroup ring has the maximum possible projective dimension. Such submonoids have a nontrivial set of pseudo-Frobenius elements. We generalize the notion of symmetric semigroups, pseudo-symmetric semigroups, and row-factorization matrices for pseudo-Frobenius elements of numerical semigroups to the case of {\text {MPD}}-semigroups in {\mathbb {N}}^d. Under suitable conditions, we prove that these semigroups satisfy the generalized Wilf’s conjecture. We prove that the generic nature of the defining ideal of the associated semigroup ring of an {\text {MPD}}-semigroup implies uniqueness of row-factorization matrix for each pseudo-Frobenius element. Further, we give a description of pseudo-Frobenius elements and row-factorization matrices of gluing of {\text {MPD}}-semigroups. We prove that the defining ideal of gluing of {\text {MPD}}-semigroups is never generic.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno