Ir al contenido

Documat


Fano manifolds with big tangent bundle: a characterisation of V_5

  • Höring, Andreas [1] ; Liu, Jie [2]
    1. [1] Institut Universitaire de France

      Institut Universitaire de France

      París, Francia

    2. [2] Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 74, Fasc. 3, 2023, págs. 639-686
  • Idioma: inglés
  • DOI: 10.1007/s13348-022-00368-3
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Let X be a Fano manifold with Picard number one such that the tangent bundle {{T}_{X}} is big. If X admits a rational curve with trivial normal bundle, we show that X is isomorphic to the del Pezzo threefold of degree five.

  • Referencias bibliográficas
    • Araujo, C., Castravet, A.M.: Polarized minimal families of rational curves and higher Fano manifolds. Amer. J. Math. 134(1), 87–107 (2012)
    • Cho, K., Miyaoka, Y., Shepherd-Barron, N..I.: Characterizations of projective space and applications to complex symplectic manifolds. Higher...
    • Campana, F., Peternell, T.: Projective manifolds whose tangent bundles are numerically effective. Math. Ann. 289(1), 169–187 (1991)
    • Debarre, O.: Higher-dimensional algebraic geometry. Universitext. Springer-Verlag, New York (2001)
    • Dedieu, T., Höring, A.: Numerical characterisation of quadrics. Algebr. Geom. 4(1), 120–135 (2017)
    • de Jong, A.J., Starr, J.: Higher Fano manifolds and rational surfaces. Duke Math. J. 139(1), 173–183 (2007)
    • Demailly, J.P., Peternell, T., Schneider, M.: Compact complex manifolds with numerically effective tangent bundles. J. Algebraic Geom. 3(2),...
    • David, E.: Commutative algebra. With a view toward algebraic geometry. Grad. Texts Math, vol. 150. Springer-Verlag, Berlin (1995)
    • Fu, B., Liu, J.: Normalised tangent bundle, varieties with small codegree and pseudoeffective threshold. J. Inst. Math. Jussieu (2021)
    • Hartshorne, R.: Algebraic geometry. Graduate Texts in Mathematics, No. 52. Springer-Verlag, New York (1977)
    • Hosono, G., Iwai, M., Matsumura, S.I.: On projective manifolds with pseudo-effective tangent bundles. J. Inst. Math. Jussieu (2019)
    • Höring, A., Liu, J., Shao, F.: Examples of Fano manifolds with non-pseudoeffective tangent bundle. J. Lond. Math. Soc. (2) 106(1), 27-59 (2022)
    • Hwang, J.M., Mok, N.: Cartan-Fubini type extension of holomorphic maps for Fano manifolds of Picard number 1. J. Math. Pures Appl. 80(6),...
    • Hwang, J.M., Mok, N.: Finite morphisms onto Fano manifolds of Picard number 1 which have rational curves with trivial normal bundles. J. Algebraic...
    • Hwang, J.M., Mok, N.: Birationality of the tangent map for minimal rational curves. Asian J. Math. 8(1), 51–63 (2004)
    • Hwang, J.M.: Geometry of minimal rational curves on Fano manifolds. In: School on Vanishing Theorems and Effective Results in Algebraic Geometry...
    • Hwang, J.M.: Mori geometry meets Cartan geometry: varieties of minimal rational tangents. In Proceedings of the International Congress of...
    • Hwang, J.M.: Geometry of webs of algebraic curves. Duke Math. J. 166(3), 495–536 (2017)
    • Ionescu, P., Naie, D.: Rationality properties of manifolds containing quasi-lines. Internat. J. Math. 14(10), 1053–1080 (2003)
    • Iwai, M.: Characterization of pseudo-effective vector bundles by singular hermitian metrics. Michigan Math. J. (2018)
    • Kebekus, S.: Characterizing the projective space after Cho, Miyaoka and Shepherd-Barron. Complex Geometry Göttingen pp. 147–155 (2002)
    • Kebekus, S.: Families of singular rational curves. J. Algebraic Geom. 11(2), 245–256 (2002)
    • Kollár, J., Mori, S.: Birational geometry of algebraic varieties. In: Cambridge Tracts in Mathematics, vol. 134. Cambridge University Press,...
    • Rational curves on algebraic varieties. Ergeb. Math. Grenzgeb., vol. 32. Springer-Verlag, Berlin (1996)
    • Lazarsfeld, R.K.: Positivity in algebraic geometry I. Classical setting: line bundles and linear series. Ergeb. Math. Grenzgeb., vol. 48....
    • Lazarsfeld, R.K.: Positivity in algebraic geometry II. Positivity for vector bundles, and multiplier ideals. Ergeb. Math. Grenzgeb., vol....
    • Matsumura, S.I.: On projective manifolds with semi-positive holomorphic sectional curvature. Amer. J. Math. (2018)
    • Micali, A.: Sur les algèbres universelles. Ann. Inst. Fourier 14(2), 33–87 (1964)
    • Mok, Ngaiming: The uniformization theorem for compact Kähler manifolds of nonnegative holomorphic bisectional curvature. J. Differential Geom....
    • Mori, S.: Projective manifolds with ample tangent bundles. Ann. of Math. 110(3), 593–606 (1979)
    • Muñoz, R., Occhetta, G., Conde, L.E., Watanabe, K., Wiśniewski, J.A.: A survey on the Campana-Peternell conjecture. Rend. Istit. Mat. Univ....
    • Muñoz, R., Occhetta, G., Conde, L.E., Watanabe, K.: Rational curves, Dynkin diagrams and Fano manifolds with nef tangent bundle. Math. Ann....
    • Peternell, T.: Varieties with generically nef tangent bundles. J. Eur. Math. Soc. 14(2), 571–603 (2012)
    • Projective duality and homogeneous spaces. Encycl. Math. Sci., vol. 133. Springer, Berlin (2005)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno