Ir al contenido

Documat


Mixed inequalities for commutators with multilinear symbol

  • Berra, Fabio [1] ; Carena, Marilina [1] ; Pradolini, Gladis [1]
    1. [1] Departamento de Matemática (FIQ-UNL), CONICET, Santa Fe, Argentina
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 74, Fasc. 3, 2023, págs. 605-637
  • Idioma: inglés
  • DOI: 10.1007/s13348-022-00367-4
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We prove mixed inequalities for commutators of Calderón–Zygmund operators (CZO) with multilinear symbols. Concretely, let m\in {\mathbb {N}} and {\mathbf {b}}=(b_1,b_2,\ldots , b_m) be a vectorial symbol such that each component b_i\in \mathrm {Osc}_{\mathrm {exp}\, L^{r_i}}, with r_i\ge 1. If u\in A_1 and v\in A_\infty (u) we prove that the inequality \begin{aligned} uv\left( \left\{ x\in {\mathbb {R}}^n: \frac{|T_{\mathbf {b}}(fv)(x)|}{v(x)}>t\right\} \right) \le C\int _{{\mathbb {R}}^n}\Phi \left( \Vert {\mathbf {b}}\Vert \frac{|f(x)|}{t}\right) u(x)v(x)\,dx \end{aligned} holds for every t 0, where \Phi (t)=t(1+\log ^+t)^r, with 1/r=\sum _{i=1}^m 1/r_i. We also consider operators of convolution type with kernels satisfying less regularity properties than CZO. In this setting, we give a Coifman type inequality for the associated commutators with multilinear symbol. This result allows us to deduce the L^p(w)-boundedness of these operators when 1 p \infty and w\in A_p. As a consequence, we can obtain the desired mixed inequality in this context.

  • Referencias bibliográficas
    • Bernardis, A., Dalmasso, E., Pradolini, G.: Generalized maximal functions and related operators on weighted Musielak–Orlicz spaces. Ann. Acad....
    • Berra, F.: From {A}_1 to {A}_\infty: New mixed inequalities for certain maximal operators, Potential Anal. (2021, in press)
    • Berra, F., Carena, M., Pradolini, G.: Mixed weak estimates of Sawyer type for commutators of generalized singular integrals and related operators....
    • Cruz-Uribe, D., Martell, J.M., Pérez, C.: Weighted weak-type inequalities and a conjecture of Sawyer. Int. Math. Res. Not. 30, 1849–1871 (2005)
    • Duoandikoetxea, J.: Fourier analysis, Graduate Studies in Mathematics, vol. 29, American Mathematical Society, Providence, RI, 2001, Translated...
    • García-Cuerva, J., Rubio de Francia, J.L.: Weighted norm inequalities and related topics, North-Holland Mathematics Studies, vol. 116, North-Holland...
    • IbañezFirnkorn, G.H., Rivera-Ríos, I.P.: Sparse and weighted estimates for generalized Hörmander operators and commutators. Monatsh. Math....
    • Krasnoselskiĭ, M.A., Rutickiĭ, J.B.: Convex functions and Orlicz spaces. In: Leo, F., Boron, P. (eds.) Translated from the First Russian....
    • Li, K., Ombrosi, S., Pérez, C.: Proof of an extension of E. Sawyer’s conjecture about weighted mixed weak-type estimates. Math. Ann. 374(1–2),...
    • Lorente, M., Martell, J.M., Riveros, M.S., de la Torre, A.: Generalized Hörmander’s conditions, commutators and weights. J. Math. Anal. Appl....
    • Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal function. Trans. Amer. Math. Soc. 165, 207–226 (1972)
    • Pérez, C.: Endpoint estimates for commutators of singular integral operators. J. Funct. Anal. 128(1), 163–185 (1995)
    • Pérez, C.: On sufficient conditions for the boundedness of the Hardy–Littlewood maximal operator between weighted L^p-spaces with different...
    • Pérez, C.: Sharp estimates for commutators of singular integrals via iterations of the Hardy–Littlewood maximal function. J. Fourier Anal....
    • Pérez, C., Trujillo-González, R.: Sharp weighted estimates for multilinear commutators. J. Lond. Math. Soc. (2) 65(3), 672–692 (2002)
    • Rao, M.M., Ren, Z.D.: Theory of Orlicz spaces, Monographs and Textbooks in Pure and Applied Mathematics, vol. 146. Marcel Dekker, Inc., New...
    • Sawyer, E.: A weighted weak type inequality for the maximal function. Proc. Amer. Math. Soc. 93(4), 610–614 (1985)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno