Ir al contenido

Documat


Equigenerated Gorenstein ideals of codimension three

  • Lira, Dayane [1] ; Ramos, Zaqueu [2] ; Simis, Aron [3] Árbol académico
    1. [1] Universidade Federal da Paraíba

      Universidade Federal da Paraíba

      Brasil

    2. [2] Universidade Federal de Sergipe

      Universidade Federal de Sergipe

      Brasil

    3. [3] Universidade Federal de Pernambuco

      Universidade Federal de Pernambuco

      Brasil

  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 74, Fasc. 3, 2023, págs. 567-593
  • Idioma: inglés
  • DOI: 10.1007/s13348-022-00365-6
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We focus on the structure of a homogeneous Gorenstein ideal I of codimension three in a standard polynomial ring R = \mathbb{k} [x_1, \ldots, x_n] over an infinite field \mathbb{k}, assuming that I is generated in a fixed degree d. For such an ideal I, there is a simple formula relating this degree, the minimal number of generators of I, and the degree of the entries of the associated skew-symmetric matrix. We give an elementary characteristic-free argument to the effect that, for any such data linked by this formula, there exists a Gorenstein ideal I of codimension three satisfying them. We conjecture that, for arbitrary n\ge 2 , an ideal I \subseteq \mathbb{k}[x_1, \ldots, x_n] generated by a general set of r\ge n+2 forms of degree d\ge 2 is Gorenstein if and only if d=2 and r= {{n+1}\atopwithdelims ()2}-1. We prove the ‘only if’ implication of this conjecture when n=3. For arbitrary n\ge 2, we prove that if d=2 and r\ge (n+2)(n+1)/6 then the ideal is Gorenstein if and only if r={{n+1}\atopwithdelims ()2}-1, which settles the ‘if’ assertion of the conjecture for n\le 5. We also elaborate around one of the questions of Fröberg–Lundqvist. In a different direction, we show a connection between the Macaulay inverse and the so-called Newton dual, a matter so far not brought out to our knowledge. Finally, we consider the question as to when the link (\ell _1^m,\ldots ,\ell _n^m):\mathfrak{f} is equigenerated, where \ell _1,\ldots ,\ell _n are independent linear forms and \mathfrak{f} is a form. We give a solution in some special cases.

  • Referencias bibliográficas
    • Anick, D.J.: Thin algebras of embedding dimension three. J. Algebra 100, 235–259 (1986)
    • Buchsbaum, D., Eisenbud, D.: Remarks on ideals and resolutions. Istituto Nazionale di Alta Matematica, Symposia Mathematica, Volume XI, Bologna...
    • Buchsbaum, D., Eisenbud, D.: Algebraic structures for finite free resolutions, and some structure theorems for ideals of codimension 3. Am....
    • Busé, L., Chardin, M., Simis, A.: Elimination and nonlinear equations of Rees algebras. J. Algebra 324, 1314–1333 (2010)
    • Conca, A., Valla, G.: Betti numbers and liftings of Gorenstein codimension three ideals. Commun. Algebra 28, 1371–1386 (2000)
    • Costa, B., Simis, A.: New constructions of Cremona maps. Math. Res. Lett. 20, 629–645 (2013)
    • Diesel, S.J.: Irreducibility and dimension theorems for families of height Gorenstein algebras. Pac. J. Math. 172, 365–397 (1996)
    • Doria, A., Simis, A.: The Newton complementary dual revisited. J. Algebra Appl. 17, 1850004-1–16 (2018)
    • Eisenbud, D., Huneke, C., Ulrich, B.: The regularity of Tor and graded Betti numbers. Am. J. Math. 128, 573–605 (2006)
    • Elias, J.: Singular library for computing Macaulay’s inverse systems. arXiv: 1501.01786v1 [math.AC] 8 Jan 2015
    • Elias, J., Rossi, M.E.: The structure of the inverse system of Gorenstein -algebras. Adv. Math. 314, 306–327 (2017)
    • Fröberg, R.: An inequality for Hilbert series of graded algebras. Math. Scand. 56, 117–144 (1985)
    • Fröberg, R., Lundqvist, S.: Questions and conjectures on extremal Hilbert series. Revista de la Unión Matematica Argentina 59, 415–429 (2018)
    • Garrousian, M., Simis, A., Tohaneanu, S.O.: A blowup algebra for hyperplane arrangements. Algebra Number Theory 12, 1401–1429 (2018)
    • Harima, T.: A note on Artinian Gorenstein algebras of codimension three. J. Pure Appl. Algebra 135, 45–56 (1999)
    • Herzog, J., Simis, A., Vasconcelos, W.V.: Koszul homology and blowing-up rings. In: Proceedings of the Trento Conference in Communication...
    • Hochster, M., Laksov, D.: The linear syzygies of generic forms. Commun. Algebra 15, 227–239 (1987)
    • Hong, J., Simis, A., Vasconcelos, W.V.: On the equations of almost complete intersections. Bull. Braz. Math. Soc. 43, 171–199 (2012)
    • Hong, J., Simis, A., Vasconcelos, W.V.: Ideals generated by quadrics. J. Algebra 423, 177–189 (2015)
    • Huneke, C., Miller, M.: A note on the multiplicity of Cohen-Macaulay algebras with pure resolutions. Can. J. Math. 37, 1149–1162 (1985)
    • Iarrobino, A., Emsalem, J.: Some zero-dimensional generic singularities; finite algebras having small tangent space. Compos. Math. 36, 145–188...
    • Iarrobino, A.: Associated graded algebra of a Gorenstein Artin algebra. Mem. Amer. Math. Soc. 107, No. 514, Amer. Math. Soc. Providence (1994)
    • Iarrobino, A., Kanev, V.: Power sums, Gorenstein algebras, and determinantal varieties. Appendix by A. Iarrobino and Steven L. Kleiman The...
    • Iarrobino, A., Srinivasan, H.: Some Gorenstein Artin algebras of embedding dimension four: components of for H = (1; 4; 7; … ; 1). J....
    • Jelisiejew, J.: Classifying local Artinian Gorenstein algebras. Collect. Math. 68, 101–127 (2017)
    • El Khouri, S., Kustin, A.: Artinian Gorenstein algebras with linear resolutions. J. Algebra 420, 402–474 (2014)
    • Kleppe, J.O.: Maximal families of Gorenstein algebras. Trans. Am. Math. Soc. 358, 3133–3167 (2006)
    • Kustin, A.R., Polini, C., Ulrich, B.: The equations defining blowup algebras of height three Gorenstein ideals. Algebra Number theory 11,...
    • Kustin, A., Ulrich, B.: If the socle fits. J. Algebra 147, 63–80 (1992)
    • Lira, D.S.: Equigenerated Gorenstein ideals of codimension 3. With a chapter on general forms, Ph.D. Thesis, Universidade Federal da Paraíba,...
    • Macaulay, F.H.S.: The Algebraic Theory of Modular Systems, Reissued with an Introduction by P. Roberts in 1994. Cambridge University Press,...
    • Migliore, J., Miró-Roig, R.M.: On the minimal free resolution of n + 1 general forms. Trans. Am. Math. Soc. 355, 1–36 (2003)
    • Muir, T.: A Treatise on the Theory of Determinants. Macmillan and Co., London (1882)
    • Nenashev, G.: A note on Fröberg’s conjecture for forms of equal degrees. C. R. Math. Acad. Sci. Paris 355(3), 272–276 (2017)
    • Planas-Vilanova, F.: Regular Local Rings of Dimension four and Gorenstein syzygetic prime ideals. J. Algebra 601, 105–114 (2022)
    • Ragusa, A., Zappalà, G.: Properties of -codimensional Gorenstein schemes. Commun. Algebra 29, 303–318 (2001)
    • Reid, L., Roberts, L.G., Roitman, M.: On complete intersections and their Hilbert functions. Can. Math. Bull. 34, 525–535 (1991)
    • Miró-Roig, R.. M., Hoa Tran, Q.: The weak Lefschetz property for Artinian Gorenstein algebras of codimension three. J. P. Appl. Algebra 224,...
    • Simis, A., Ulrich, B., Vasconcelos, W.V.: Codimension, multiplicity and integral extensions. Math. Proc. Camb. Philos. Soc. 130, 237–257 (2001)
    • Stanley, R.: Weyl groups, the hard Lefschetz theorem, and the Sperner property. SIAM J. Algebr. Discrete Methods 1, 168–184 (1980)
    • Vasconcelos, W.V.: Arithmetic of Blowup Algebras, London Math. Soc., Lecture Note Series 195. Cambridge University Press, Cambridge (1994)
    • Watanabe, J.: A note on Gorenstein rings of embedding dimension three. Nagoya Math. J. 50, 227–232 (1973)
    • Watanabe, J.: The Dilworth Number of Artinian Rings and Finite Posets with Rank Function. Commutative Algebra and Combinatorics, Advanced...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno