Ir al contenido

Documat


Fighting disinformation with artificial intelligence: fundamentals, advances and challenges

  • Montoro-Montarroso, Andrés [1] ; Cantón-Correa, Javier [5] ; Rosso, Paolo [2] ; Chulvi, Berta [2] ; Panizo-Lledot, Ángel [3] ; Huertas-Tato, Javier [3] ; Calvo-Figueras, Blanca [4] ; Rementeria, M. José [4] ; Gómez-Romero, Juan [1]
    1. [1] Universidad de Granada

      Universidad de Granada

      Granada, España

    2. [2] Universidad Politécnica de Valencia

      Universidad Politécnica de Valencia

      Valencia, España

    3. [3] Universidad Politécnica de Madrid

      Universidad Politécnica de Madrid

      Madrid, España

    4. [4] Centro Nacional de Supercomputación

      Centro Nacional de Supercomputación

      Barcelona, España

    5. [5] Universidad de Granada / Universidad Internacional de La Rioja
  • Localización: El profesional de la información, ISSN-e 1699-2407, ISSN 1386-6710, Vol. 32, Nº 3, 2023 (Ejemplar dedicado a: Network activisms)
  • Idioma: inglés
  • DOI: 10.3145/epi.2023.may.22
  • Títulos paralelos:
    • Inteligencia artificial contra la desinformación: fundamentos, avances y retos
  • Enlaces
  • Resumen
    • español

      Internet y las redes sociales han revolucionado la forma en la que se distribuye y consume la información. Sin embargo, la enorme cantidad de contenidos disponibles en estas plataformas dificulta la tarea distinguir entre lo verdadero y lo falso, más aún con la proliferación de actores malintencionados que difunden bulos. Desmentir la desinformación es un proceso muy costoso, por lo que en los últimos años se han desarrollado múltiples investigaciones sobre el potencial de la inteligencia artificial (IA) –y, más concretamente, del aprendizaje automático (AA)– como una solución al problema. Este trabajo revisa la bibliografía reciente sobre las técnicas de IA y AA que han sido propuestas para combatir la desinformación, que van desde la clasificación automática de texto hasta la extracción de características, así como el papel relevante que pueden jugar en la creación de contenido artificial. La principal conclusión del estudio es que los avances en IA se han centrado principalmente en la clasificación automática y que su utilización fuera de los laboratorios de investigación ha sido escasa. Esto se debe principalmente a que los modelos de AA dependen mucho de los conjuntos de datos con los que son entrenados, lo cual limita su aplicación y su efectividad en diferentes ámbitos. En consecuencia, se propone que los esfuerzos de investigación ha de dirigirse hacia el desarrollo de sistemas de IA que sean explicables, confiables y que apoyen a las personas, en lugar de sustituirlas, en la detección temprana de desinformación.

    • English

      Internet and social media have revolutionised the way news is distributed and consumed. However, the constant flow of massive amounts of content has made it difficult to discern between truth and falsehood, especially in online platforms plagued with malicious actors who create and spread harmful stories. Debunking disinformation is costly, which has put artificial intelligence (AI) and, more specifically, machine learning (ML) in the spotlight as a solution to this problem. This work revises recent literature on AI and ML techniques to combat disinformation, ranging from automatic classification to feature extraction, as well as their role in creating realistic synthetic content. We conclude that ML advances have been mainly focused on automatic classification and scarcely adopted outside research labs due to their dependence on limited-scope datasets. Therefore, research efforts should be redirected towards developing AI-based systems that are reliable and trustworthy in supporting humans in early disinformation detection instead of fully automated solutions. 

  • Referencias bibliográficas
    • Afroz, Sadia; Brennan, Michael; Greenstadt, Rachel (2012). “Detecting hoaxes, frauds, and deception in writing style online”. In: IEEE symposium...
    • Aggarwal, Charu C. (2011). “An introduction to social network data analytics”. In: Aggarwal, Charu C. (ed.). Social network data analytics....
    • Amador, Julio; Molina-Solana, Miguel; Gómez-Romero, Juan (2019). “Towards easy-to-implement misinformation automatic detection for online...
    • Arnold, Phoebe (2020). “The challenges of online fact checking”. Full fact, 17 December. https://fullfact.org/blog/2020/dec/the-challenges-of-online-fact-checking-how-technology-can-and-cant-help
    • Azevedo, Lucas; D’Aquin, Mathieu; Davis, Brian; Zarrouk, Manel (2021). “LUX (linguistic aspects under examination): discourse analysis for...
    • Barabási, Albert-László (2016). Network science. Cambridge University Press. ISBN: 978 1 107 07626 6 http://networksciencebook.com
    • Bedi, Punam; Sharma, Chhavi (2016). “Community detection in social networks”. Wiley interdisciplinary reviews: Data mining and knowledge discovery,...
    • Bishop, Christopher M. (2006). Pattern recognition and machine learning. Springer. ISBN: 978 0 387 31073 2 https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf
    • Blondel, Vincent D.; Guillaume, Jean-Loup; Lambiotte, Renaud; Lefebvre, Etienne (2008). “Fast unfolding of communities in large networks”....
    • Bondielli, Alessandro; Marcelloni, Francesco (2019). “A survey on fake news and rumour detection techniques”. Information sciences, v. 497,...
    • Bonet-Jover, Alba; Piad-Morffis, Alejandro; Saquete, Estela; Martínez-Barco, Patricio; García-Cumbreras, Miguel-Ángel (2021). “Exploiting...
    • Brown, Tom B.; Mann, Benjamin; Ryder, Nick; Subbiah, Melanie; Kaplan, Jared; Dhariwal, Prafulla; Neelakantan, Arvind; Shyam, Pranav; Sastry,...
    • Buda, Jakab; Bolonyai, Flora (2020). “An ensemble model using n-grams and statistical features to identify fake news spreaders on Twitter”....
    • Camacho, David; Panizo-Lledot, Ángel; Bello-Orgaz, Gema; González-Pardo, Antonio; Cambria, Erik (2020). “The four dimensions of social network...
    • Cambria, Erik; Wang, Haixun; White, Bebo (2014). “Guest editorial: big social data analysis”. Knowledge-based systems, v. 69. https://doi.org/10.1016/j.knosys.2014.07.002
    • Castelo, Sonia; Almeida, Thais; Elghafari, Anas; Santos, Aécio; Pham, Kien; Nakamura, Eduardo; Freire, Juliana (2019). “A topic-agnostic approach...
    • Dagar, Deepak; Vishwakarma, Dinesh K. (2022). “A literature review and perspectives in deepfakes: generation, detection, and applications”....
    • Das, Anubrata; Liu, Houjiang; Kovatchev, Venelin; Lease, Matthew (2023). “The state of human-centered NLP technology for fact-checking”. Information...
    • Davis, Clayton-Allen; Varol, Onur; Ferrara, Emilio; Flammini, Alessandro; Menczer, Filippo (2016). “BotOrNot: a system to evaluate social...
    • Della-Vedova, Marco L.; Tacchini, Eugenio; Moret, Stefano; Ballarin, Gabriele; DiPierro, Massimo; De-Alfaro, Luca (2018). “Automatic online...
    • De-Souza, Mariana C.; Nogueira, Bruno-Magalhães; Rossi, Rafael-Geraldeli; Marcacini, Ricardo-Marcondes; Dos-Santos, Brucce-Neves; Rezende,...
    • Del-Vicario, Michela; Vivaldo, Gianna; Bessi, Alessandro; Zollo, Fabiana; Scala, Antonio; Caldarelli, Guido; Quattrociocchi, Walter (2016)....
    • Des-Mesnards, Nicolas-Guenon; Hunter, David-Scott; El-Hjouji, Zakaria; Zaman, Tauhid (2022). “Detecting bots and assessing their impact in...
    • Dong, Xishuang; Victor, Uboho; Qian, Lijun (2020). “Two-path deep semisupervised learning for timely fake news detection”. IEEE transactions...
    • Ferrara, Emilio; Varol, Onur; Davis, Clayton; Menczer, Filippo; Flammini, Alessandro (2016). “The rise of social bots”. Communications of...
    • Fortunato, Santo (2010). “Community detection in graphs”. Physics reports, v. 486, n. 3-5, pp. 75-174. https://doi.org/10.1016/j.physrep.2009.11.002
    • Ghanem, Bilal; Ponzetto, Simone P.; Rosso, Paolo; Rangel, Francisco (2021). “FakeFlow: fake news detection by modeling the flow of affective...
    • Giachanou, Anastasia; Ghanem, Bilal; Ríssola, Esteban A.; Rosso, Paolo; Crestani, Fabio; Oberski, Daniel (2022). “The impact of psycholinguistic...
    • Giachanou, Anastasia; Rosso, Paolo; Crestani, Fabio (2019). “Leveraging emotional signals for credibility detection”. In: Proceedings of the...
    • Giachanou, Anastasia; Rosso, Paolo; Crestani, Fabio (2021). “The impact of emotional signals on credibility assessment”. Journal of the Association...
    • Giachanou, Anastasia; Zhang, Guobiao; Rosso, Paolo (2020). “Multimodal multi-image fake news detection”. In: IEEE 7th International conference...
    • Goodfellow, Ian; Bengio, Yoshua; Courville, Aaron (2016). Deep learning. MIT Press. ISBN: 978 0 262 035613
    • Goodfellow, Ian J.; Pouget-Abadie, Jean; Mirza, Mehdi; Xu, Bing; Warde-Farley, David; Ozair, Sherjil; Courville, Aaron; Bengio, Yoshua (2014)....
    • Graves, Lucas (2018). Understanding the promise and limits of automated fact-checking. Reuters Institute, University of Oxford. https://reutersinstitute.politics.ox.ac.uk/sites/default/files/2018-02/graves_factsheet_180226%20FINAL.pdf
    • Graves, Lucas; Nyhan, Brendan; Reifler, Jason (2016). “Understanding innovations in journalistic practice: a field experiment examining motivations...
    • Greengard, Samuel (2019). “Will deepfakes do deep damage?”. Communications of the ACM, v. 63, n. 1, pp. 17-19. https://doi.org/10.1145/3371409
    • Grinberg, Nir; Joseph, Kenneth; Friedland, Lisa; Swire-Thompson, Briony; Lazer, David (2019). “Fake news on Twitter during the 2016 U.S. presidential...
    • Guo, Bin; Ding, Yasan; Yao, Lina; Liang, Yunji; Yu, Zhiwen (2020). “The future of false information detection on social media: new perspectives...
    • Guo, Zhijiang; Schlichtkrull, Michael; Vlachos, Andreas (2022). “A survey on automated fact-checking”. Transactions of the Association for...
    • Hangloo, Sakshini; Arora, Bhavna (2022). “Combating multimodal fake news on social media: methods, datasets, and future perspective”. Multimedia...
    • Harrigan, Paul; Daly, Timothy M.; Coussement, Kristof; Lee, Julie A.; Soutar, Geoffrey N.; Evers, Uwana (2021). “Identifying influencers on...
    • Jing, Jing; Wu, Hongchen; Sun, Jie; Fang, Xiaochang; Zhang, Huaxiang (2023). “Multimodal fake news detection via progressive fusion networks”....
    • John, Oliver P.; Srivastava, Sanjay (1999). “The big five trait taxonomy: history, measurement, and theoretical perspectives”. In: Pervin,...
    • Kang, SeongKu; Hwang, Junyoung; Yu, Hwanjo (2020). “Multi-modal component embedding for fake news detection”. In: 14th international conference...
    • Karras, Tero; Aila, Timo; Laine, Samuli; Lehtinen, Jaakko (2018). “Progressive growing of GANs for improved quality, stability, and variation”....
    • Karras, Tero; Laine, Samuli; Aila, Timo (2019). “A style-based generator architecture for generative adversarial networks”. In: Proceedings...
    • Kartal, Yavuz-Selim; Kutlu, Mucahid (2023). “Re-think before you share: a comprehensive study on prioritizing check-worthy claims”. IEEE transactions...
    • Khattar, Dhruv; Goud, Jaipal-Singh; Gupta, Manish; Varma, Vasudeva (2019). “MVAE: multimodal variational autoencoder for fake news detection”....
    • Konstantinovskiy, Lev; Price, Oliver; Babakar, Mevan; Zubiaga, Arkaitz (2021). “Toward automated factchecking: developing an annotation schema...
    • Kudugunta, Sneha; Ferrara, Emilio (2018). “Deep neural networks for bot detection”. Information sciences, v. 467, pp. 312-322. https://doi.org/10.1016/j.ins.2018.08.019
    • La-Barbera, David; Roitero, Kevin; Mizzaro, Stefano (2022). “A hybrid human-in-the-loop framework for fact checking”. In: Proceedings of the...
    • LeCun, Yann; Bengio, Yoshua; Hinton, Geoffrey (2015). “Deep learning”. Nature, v. 521, n. 7553, pp. 436-444. https://doi.org/10.1038/nature14539
    • Li, Dun; Guo, Haimei; Wang, Zhenfei; Zheng, Zhiyun (2021). “Unsupervised fake news detection based on autoencoder”. IEEE access, v. 9, pp....
    • Li, Shuo; Yao, Tao; Li, Saifei; Yan, Lianshan (2022). “Semantic‐enhanced multimodal fusion network for fake news detection”. International...
    • Li, Xin; Lu, Peixin; Hu, Lianting; Wang, Xiao-Guang; Lu, Long (2022). “A novel self-learning semi-supervised deep learning network to detect...
    • Liu, Yang; Wu, Yi-Fang (2018). “Early detection of fake news on social media through propagation path classification with recurrent and convolutional...
    • Liu, Yang; Xu, Songhua (2016). “Detecting rumors through modeling information propagation networks in a social media environment”. IEEE transactions...
    • Manning, Christopher D.; Schütze, Hinrich (1999). Foundations of statistical natural language processing. MIT Press. ISBN: 978 0 262 133609
    • Marcus, Gary (2022). “AI platforms like chatGPT are easy to use but also potentially dangerous”. Scientific American, 19 December. https://www.scientificamerican.com/article/ai-platforms-like-chatgpt-are-easy-to-use-but-also-potentially-dangerous
    • Martín, Alejandro; Huertas-Tato, Javier; Huertas-García, Álvaro; Villar-Rodríguez, Guillermo; Camacho, David (2022). “FacTeR-check: semi-automated...
    • Masood, Momina; Nawaz, Mariam; Malik, Khalid M.; Javed, Ali; Irtaza, Aun; Malik, Hafiz (2022). “Deepfakes generation and detection: state-of-the-art,...
    • Meel, Priyanka; Vishwakarma, Dinesh K. (2020). “Fake news, rumor, information pollution in social media and web: a contemporary survey of...
    • Meel, Priyanka; Vishwakarma, Dinesh K. (2021). “A temporal ensembling based semi-supervised convnet for the detection of fake news articles”....
    • Megahed, Fadel M.; Chen, Ying-Ju; Ferris, Joshua A.; Knoth, Sven; Jones-Farmer, L. Allison (2023). “How generative AI models such as chatGPT...
    • Mikolov, Tomas; Chen, Kai; Corrado, Greg; Dean, Jeffrey (2013). “Efficient estimation of word representations in vector space”. In: 1st International...
    • Mirsky, Yisroel; Lee, Wenke (2022). “The creation and detection of deepfakes”. ACM computing surveys, v. 54, n. 1. https://doi.org/10.1145/3425780
    • Mitchell, Eric; Lee, Yoonho; Khazatsky, Alexander; Manning, Christopher D.; Finn, Chelsea (2023). “DetectGPT: zero-shot machine-generated...
    • Molina-Solana, Miguel; Amador, Julio; Gómez-Romero, Juan (2018). “Deep learning for fake news classification”. In: I Workshop on deep learning,...
    • Nakamura, Kai; Levy, Sharon; Wang, William Y. (2020). “Fakeddit: a new multimodal benchmark dataset for fine-grained fake news detection”....
    • Nakov, Preslav; Corney, David; Hasanain, Maram; Alam, Firoj; Elsayed, Tamer; Barrón-Cedeño, Alberto; Papotti, Paolo; Shaar, Shaden; Da-San-Martino,...
    • Nakov, Preslav; Da-San-Martino, Giovanni; Elsayed, Tamer; Barrón-Cedeño, Alberto; Míguez, Rubén; Shaar, Shaden; Alam, Firoj; Haouari, Fatima;...
    • Newman, Mark E. J. (2004). “Fast algorithm for detecting community structure in networks”. Physical review E, v. 69, n. 6, 066133. https://doi.org/10.1103/PhysRevE.69.066133
    • Oehmichen, Axel; Hua, Kevin; Amador, Julio; Molina-Solana, Miguel; Gómez-Romero, Juan; Guo, Yi-ke (2019). “Not all lies are equal. A study...
    • Paka, William-Scott; Bansal, Rachit; Kaushik, Abhay; Sengupta, Shubhashis; Chakraborty, Tanmoy (2021). “Cross-sean: a cross-stitch semi-supervised...
    • Pasi, Gabriella; De-Grandis, Marco; Viviani, Marco (2020). “Decision making over multiple criteria to assess news credibility in microblogging...
    • Pennebaker, James W.; Boyd, Ryan L.; Jordan, Kayla; Blackburn, Kate (2015). The development and psychometric properties of LIWC2015. Austin,...
    • Pennington, Jeffrey; Socher, Richard; Manning, Christopher (2014). “GloVe: global vectors for word representation”. In: Proceedings of the...
    • Qi, Peng; Cao, Juan; Yang, Tianyun; Guo, Junbo; Li, Jintao (2019). “Exploiting multi-domain visual information for fake news detection”. In:...
    • Rana, Md-Shohel; Nobi, Mohammad-Nur; Murali, Beddhu; Sung, Andrew H. (2022). “Deepfake detection: a systematic literature review”. IEEE access,...
    • Rashkin, Hannah; Choi, Eunsol; Jang, Jin Y.; Volkova, Svitlana; Choi, Yejin (2017). “Truth of varying shades: analyzing language in fake news...
    • Rath, Bhavtosh; Salecha, Aadesh; Srivastava, Jaideep (2022). “Fake news spreader detection using trust-based strategies in social networks...
    • Ruffo, Giancarlo; Semeraro, Alfonso; Giachanou, Anastasia; Rosso, Paolo (2023). “Studying fake news spreading, polarisation dynamics, and...
    • Russell, Stuart; Norvig, Peter (2020). Artificial intelligence: a modern approach. Pearson Series. ISBN: 978 0 134 610993
    • Saif, Shahela; Tehseen, Samabia (2022). “Deepfake videos: synthesis and detection techniques - a survey”. Journal of intelligent and fuzzy...
    • Schuster, Tal; Schuster, Roei; Shah, Darsh J.; Barzilay, Regina (2020). “The limitations of stylometry for detecting machine-generated fake...
    • Serengil, Sefik I.; Ozpinar, Alper (2021). “HyperExtended lightface: a facial attribute analysis framework”. In: International conference...
    • Serrano-Guerrero, Jesús; Olivas, José A.; Romero, Francisco P.; Herrera-Viedma, Enrique (2015). “Sentiment analysis: a review and comparative...
    • Shabani, Shaban; Charlesworth, Zarina; Sokhn, Maria; Schuldt, Heiko (2021). “SAMS: human-in-the-loop approach to combat the sharing of digital...
    • Shao, Chengcheng; Ciampaglia, Giovanni-Luca; Varol, Onur; Yang, Kai-Cheng; Flammini, Alessandro; Menczer, Filippo (2018). “The spread of low-credibility...
    • Shao, Chengcheng; Hui, Pik-Mai; Wang, Lei; Jiang, Xinwen; Flammini, Alessandro; Menczer, Filippo; Ciampaglia, Giovanni-Luca (2018). “Anatomy...
    • Shrestha, Anu; Spezzano, Francesca (2022). “Characterizing and predicting fake news spreaders in social networks”. International journal of...
    • Shu, Kai; Sliva, Amy; Wang, Suhang; Tang, Jiliang; Liu, Huan (2017). “Fake news detection on social media: a data mining perspective”. ACM...
    • Shu, Kai; Wang, Suhang; Liu, Huan (2019). “Beyond news contents: the role of social context for fake news detection”. In: Proceedings of the...
    • Shu, Kai; Zhou, Xinyi; Wang, Suhang; Zafarani, Reza; Liu, Huan (2019). “The role of user profiles for fake news detection”. In: Proceedings...
    • Simko, Jakub; Racsko, Patrik; Tomlein, Matus; Hanakova, Martina; Moro, Robert; Bielikova, Maria (2021). “A study of fake news reading and...
    • Singh, Prabhav; Srivastava, Ridam; Rana, K. P. S.; Kumar, Vineet (2023). “SEMI-fnd: stacked ensemble based multimodal inferencing framework...
    • Solaiman, Irene; Brundage, Miles; Clark, Jack; Askell, Amanda; Herbert-Voss, Ariel; Wu, Jeff; Radford, Alec; Krueger, Gretchen; Kim, Jong-Wook;...
    • Song, Chenguang; Teng, Yiyang; Zhu, Yangfu; Wei, Siqi; Wu, Bin (2022). “Dynamic graph neural network for fake news detection”. Neurocomputing,...
    • Srinivas, P. Y. K. L.; Das, Amitava; Pulabaigari, Viswanath (2022). “Fake spreader is narcissist; real spreader is Machiavellian prediction...
    • Stella, Massimo; Ferrara, Emilio; De-Domenico, Manlio (2018). “Bots increase exposure to negative and inflammatory content in online social...
    • Tacchini, Eugenio; Ballarin, Gabriele; Della-Vedova, Marco L.; Moret, Stefano; De-Alfaro, Luca (2017). “Some like it hoax: automated fake...
    • Thorne, James; Vlachos, Andreas (2018). “Automated fact checking: task formulations, methods and future directions”. In: Proceedings of the...
    • Tolosana, Rubén; Vera-Rodríguez, Rubén; Fierrez, Julián; Morales, Aythami; Ortega-García, Javier (2020). “Deepfakes and beyond: a survey of...
    • Vaswani, Ashish; Shazeer, Noam; Parmar, Niki; Uszkoreit, Jakob; Jones, Llion; Gomez, Aidan N.; Kaiser, Łukasz; Polosukhin, Illia (2017). “Attention...
    • Vogel, Inna; Meghana, Meghana (2020). “Fake news spreader detection on Twitter using character n-grams”. In: CEUR Workshop proceedings, v....
    • Vosoughi, Soroush; Roy, Deb; Aral, Sinan (2018). “The spread of true and false news online”. Science, v. 359, n. 6380, pp. 1146-1151. https://doi.org/10.1126/science.aap9559
    • Wang, Tingting; Liu, Hongyan; He, Jun; Du, Xiaoyong (2013). “Mining user interests from information sharing behaviors in social media”. In:...
    • Wang, William Y. (2017). “‘Liar, liar pants on fire’: a new benchmark dataset for fake news detection”. In: 55th Annual meeting of the Association...
    • Wang, Yaqing; Ma, Fenglong; Jin, Zhiwei; Yuan, Ye; Xun, Guangxu; Jha, Kishlay; Su, Lu; Gao, Jing (2018). “EANN: event adversarial neural networks...
    • Wardle, Claire; Derakhshan, Hossein (2017). Information disorder: toward an interdisciplinary framework for research and policy making. Council...
    • Xiong, Shufeng; Zhang, Guipei; Batra, Vishwash; Xi, Lei; Shi, Lei; Liu, Liangliang (2023). “Trimoon: two-round inconsistency-based multi-modal...
    • Xu, Fan; Sheng, Victor S.; Wang, Mingwen (2023). “A unified perspective for disinformation detection and truth discovery in social sensing:...
    • Yang, Jing; Vega-Oliveros, Didier; Seibt, Tais; Rocha, Anderson (2021). “Scalable fact-checking with human-in-the-loop”. In: IEEE International...
    • Yang, Shuo; Shu, Kai; Wang, Suhang; Gu, Renjie; Wu, Fan; Liu, Huan (2019). “Unsupervised fake news detection on social media: a generative...
    • Yin, Zhijun; Cao, Liangliang; Gu, Quanquan; Han, Jiawei (2012). “Latent community topic analysis”. ACM transactions on intelligent systems...
    • Zhang, Guobiao; Giachanou, Anastasia; Rosso, Paolo (2022). “SceneFND: multimodal fake news detection by modelling scene context information”....
    • Zhang, Xichen; Ghorbani, Ali A. (2020). “An overview of online fake news: characterization, detection, and discussion”. Information processing...
    • Zhou, Xinyi; Jain, Atishay; Phoha, Vir V.; Zafarani, Reza (2020). “Fake news early detection”. Digital threats: research and practice, v....
    • Zhou, Xinyi; Zafarani, Reza (2020). “A survey of fake news: fundamental theories, detection methods, and opportunities”. ACM computing surveys,...
    • Zhu, Q.; Luo, J. (2022). “Generative pre-trained transformer for design concept generation: an exploration”. Proceedings of the design society,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno