Ir al contenido

Documat


Data wrangling, computational burden, automation, robustness and accuracy in ecological inference forecasting of RxC tables

  • Jose M. Pavía [1] Árbol académico ; Rafael Romero [2] Árbol académico
    1. [1] Universitat de València

      Universitat de València

      Valencia, España

    2. [2] Universidad Politécnica de Valencia

      Universidad Politécnica de Valencia

      Valencia, España

  • Localización: Sort: Statistics and Operations Research Transactions, ISSN 1696-2281, Vol. 47, Nº. 1, 2023, págs. 151-186
  • Idioma: inglés
  • Enlaces
  • Resumen
    • This paper assesses the two current major alternatives for ecological inference, based on a multinomial-Dirichlet Bayesian model and on mathematical programming. Their performance is evaluated in a database made up of almost 2000 real datasets for which the actual cross-distributions are known. The analysis reveals both approaches as complementarity, each one of them performing better in a different area of the simplex space, although with Bayesian solutions deteriorating when the amount of information is scarce. After offering some guidelines regarding the appropriate contexts for employing each one of the algorithms, we conclude with some ideas for exploiting their complementarities.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno