Ir al contenido

Documat


Topologies, posets and finite quandles

  • M. Elhamdadi [1] ; T. Gona [2] ; H. Lahrani [1]
    1. [1] Department of Mathematics and Statistics, University of South FloridaTampa, FL33620, U.S.A
    2. [2] Department of Mathematics, University of California Berkeley, CA94720, U.S.A.
  • Localización: Extracta mathematicae, ISSN-e 0213-8743, Vol. 38, Nº 1, 2023, págs. 1-15
  • Idioma: inglés
  • DOI: 10.17398/2605-5686.38.1.1
  • Enlaces
  • Resumen
    • An Alexandroff space is a topological space in which every intersection of open sets isopen. There is one to one correspondence between AlexandroffT0-spaces andpartially ordered sets(posets). We investigate AlexandroffT0-topologies on finite quandles. We prove that there is anon-trivial topology on a finite quandle making right multiplications continuous functions if andonly if the quandle has more than one orbit. Furthermore, we show that right continuous posets onquandles withnorbits aren-partite. We also find, for the even dihedral quandles, the number ofall possible topologies making the right multiplications continuous. Some explicit computations forquandles of cardinality up tofiveare given

  • Referencias bibliográficas
    • [1]P.S. Alexandroff,Diskrete r ̈aume,Mat. Sb.2(1937), 501 – 518.
    • [2]Z. Cheng, M. Elhamdadi, B. Shekhtman,On the classification of topo-logical quandles,Topology Appl.248(2018), 64 – 74. MR3856599
    • [3]M. Elhamdadi,Distributivity in quandles and quasigroups, in “ Algebra,Geometry and Mathematical Physics ”, Springer Proc. ...
    • [4]M. Elhamdadi, M. Saito, E. Zappala,Continuous cohomology of topo-logical quandlesJ. Knot Theory Ramifications28(6) (2019), 1950036,...
    • [5]M. Elhamdadi, El-Ka ̈ıoum M. Moutuou,Foundations of topologicalracks and quandles,J. Knot Theory Ramifications25(3) (2016), 1640002,17...
    • [6]M. Elhamdadi, S. Nelson,“ Quandles–an introduction to the algebra ofknots ”, Student Mathematical Library, 74, American Mathematical Society,Providence,...
    • [7]T. Grøsfjeld,Thesaurus racks: categorizing rack objects,J. Knot TheoryRamifications30(4) (2021), 2150019, 18 pp. MR4272643
    • [8]D. Joyce,A classifying invariant of knots, the knot quandle,J. Pure Appl.Algebra23(1) (1982), 37 – 65. MR638121 (83m:57007)
    • [9] Maple 15, Magma package-copyright by Maplesoft, a division of WaterlooMaple, Inc., 1981 – 2011.
    • [10]S.V. Matveev,Distributive groupoids in knot theory (russian),Mat. Sb.(N.S.)119 (161)(1) (1982), 78 – 88, 160. MR672410 (84e:57008)
    • [11]R.L. Rubinsztein,Topological quandles and invariants of links,J. KnotTheory Ramifications16(6) (2007), 789 – 808. MR2341318 (2008e:57012)
    • [12]R.E. Stong,Finite topological spaces,Trans. Amer. Math. Soc.123(1966),325 – 340. MR195042
    • [13]M. Szymik,Permutations, power operations, and the center of the categoryof racks,Comm. Algebra46(1) (2018), 230 – 240. MR3764859
    • [14]N. Takahashi,Modules over geometric quandles and representations of Lie-Yamaguti algebras,J. Lie Theory31(4) (2021), 897 – 932. MR4327618

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno