Ir al contenido

Documat


Strong Resonance Bifurcations and State Feedback Control in a Discrete Prey-Predator Model with Harvesting Effect

  • Vijay Shankar Sharma [1] ; Anuraj Singh [1]
    1. [1] ABV-Indian Institute of Information Technology and Management
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 22, Nº 3, 2023
  • Idioma: inglés
  • Enlaces
  • Resumen
    • This paper investigates a discrete-time predator–prey model with predator harvesting.

      The stability analysis for different fixed points of the discretized model is shown briefly.

      In this study, different types of bifurcation and their normal forms are determined. As the prey harvesting and conversion rate of prey into predator are ecologically significant, the impact of theirs have been studied by choosing the bifurcation parameter.

      The system exhibits a sequence of bifurcations of codim-1 viz. Neimark–Sacker bifurcation and flip bifurcation (period-doubling) and codim-2 resonance bifurcation (1:2, 1:3 and 1:4) at a positive fixed point. For each bifurcation, by using the critical normal form coefficient method, various critical states are calculated under non-degeneracy conditions. Further, a detailed numerical simulation is presented for supporting the analytical findings. The bifurcation curves, phase plots and Maximum Lyapunov exponent (MLE) are drawn. The system exhibits a wide range of bifurcation, including periodic orbits, quasi-periodicity, resonance bifurcation and chaos. Moreover, it is shown that predator harvesting has a stabilizing effect on the dynamics of the model. The chaos that occurred in the system is reduced beyond the critical value of harvesting. The predator population goes extinct after crossing the threshold value of harvesting. This work reflects that the feasible upper bound of the harvesting rate for the species coexistence can be guaranteed. Further, a state feedback controller is employed to suppress the dense chaos in the discrete system. The control technique applied for codim-1 Neimark–Sacker bifurcation and codim-2 1:4 resonance bifurcation is instrumental to reduce the complexity in the system.

  • Referencias bibliográficas
    • 1. Costantino, R., Cushing, J., Dennis, B., Desharnais, R.A.: Experimentally induced transitions in the dynamic behaviour of insect populations....
    • 2. Cushing, J.M., Costantino, R.F., Dennis, B., Desharnais, R., Henson, S.M.: Chaos in Ecology: Experimental Nonlinear Dynamics, vol. 1. Elsevier...
    • 3. Desharnais, R.A., Costantino, R., Cushing, J., Henson, S.M., Dennis, B.: Chaos and population control of insect outbreaks. Ecol. Lett....
    • 4. Turchin, P.: A theoretical/empirical synthesis, mongraphs in population biology, complex population dynamics, MPB- vol. 35 (2003)
    • 5. Bazykin, A.D.: Nonlinear Dynamics of Interacting Populations. World Scientific (1998)
    • 6. Hastings, A., Powell, T.: Chaos in a three-species food chain. Ecology 72(3), 896–903 (1991)
    • 7. Singh, A., Gakkhar, S.: Controlling chaos in a food chain model. Math. Comput. Simul. 115, 24–36 (2015)
    • 8. Sabin, G.C., Summers, D.: Chaos in a periodically forced predator-prey ecosystem model. Math. Biosci. 113(1), 91–113 (1993)
    • 9. Berezovskaya, F., Karev, G., Arditi, R.: Parametric analysis of the ratio-dependent predator-prey model. J. Math. Biol. 43(3), 221–246...
    • 10. Sen, M., Banerjee, M., Morozov, A.: Bifurcation analysis of a ratio-dependent prey-predator model with the Allee effect. Ecol. Complex....
    • 11. Wang, J., Shi, J., Wei, J.: Predator-prey system with strong Allee effect in prey. J. Math. Biol. 62(3), 291–331 (2011)
    • 12. Morozov, A.Y., Banerjee, M., Petrovskii, S.V.: Long-term transients and complex dynamics of a stagestructured population with time delay...
    • 13. Lotka, A.J.: Elements of Physical Biology. Williams & Wilkins (1925)
    • 14. Volterra, V.: Variations and fluctuations in the number of individuals in cohabiting animal species 412, 432–433 (1926)
    • 15. Du, Y., Peng, R., Wang, M.: Effect of a protection zone in the diffusive Leslie predator-prey model. J. Differ. Equ. 246(10), 3932–3956...
    • 16. Gakkhar, S., Singh, A.: Control of chaos due to additional predator in the Hastings–Powell food chain model. J. Math. Anal. Appl. 385(1),...
    • 17. Huang, Jc., Xiao, D.M.: Analyses of bifurcations and stability in a predator-prey system with Holling type-IV functional response. Acta...
    • 18. Huang, J., Gong, Y., Ruan, S.: Bifurcation analysis in a predator-prey model with constant-yield predator harvesting. Discrete Contin....
    • 19. May, R.M.: The Theory of Chaotic Attractors, pp. 85–93. Springer (2004)
    • 20. Georgescu, P., Hsieh, Y.H.: Global dynamics of a predator-prey model with stage structure for the predator. SIAM J. Appl. Math. 67(5),...
    • 21. Takeuchi, V.: Global Dynamical Properties of Lotka–Volterra Systems. World Scientific (1996)
    • 22. Chakraborty, K., Jana, S., Kar, T.K.: Global dynamics and bifurcation in a stage structured prey-predator fishery model with harvesting....
    • 23. May, R.M., Oster, G.F.: Bifurcations and dynamic complexity in simple ecological models. Am. Nat. 110(974), 573–599 (1976)
    • 24. Liz, E.: Local stability implies global stability in some one-dimensional discrete single-species models. Discrete Contin. Dyn. Syst.-B...
    • 25. Huang, J., Liu, S., Ruan, S., Xiao, D.: Bifurcations in a discrete predator-prey model with nonmonotonic functional response. J. Math....
    • 26. Din, Q.: Complexity and chaos control in a discrete-time prey-predator model. Commun. Nonlinear Sci. Numer. Simul. 49, 113–134 (2017)
    • 27. He, Z., Lai, X.: Bifurcation and chaotic behavior of a discrete-time predator-prey system. Nonlinear Anal. Real World Appl. 12(1), 403–417...
    • 28. Agiza, H., Elabbasy, E., El-Metwally, H., Elsadany, A.: Chaotic dynamics of a discrete prey-predator model with Holling type II. Nonlinear...
    • 29. Smith, J.M.: Mathematical Ideas in Biology. CUP Archive (1968)
    • 30. Levine, S.H.: Discrete time modeling of ecosystems with applications in environmental enrichment. Math. Biosci. 24(3–4), 307–317 (1975)
    • 31. Liu, X., Xiao, D.: Bifurcations in a discrete-time Lotka–Volterra predator-prey system. Discrete Contin. Dyn. Syst.-B 6(3), 559 (2006)
    • 32. Hadeler, K., Gerstmann, I.: The discrete Rosenzweig model. Math. Biosci. 98(1), 49–72 (1990)
    • 33. Li, S., Zhang, W.: Bifurcations of a discrete prey-predator model with Holling type-II functional response. Discrete Contin. Dyn. Syst.-B...
    • 34. Singh, A., Deolia, P.: Dynamical analysis and chaos control in discrete-time prey-predator model. Commun. Nonlinear Sci. Numer. Simul....
    • 35. Singh, A., Deolia, P.: Bifurcation and chaos in a discrete predator–prey model with Holling type–III functional response and harvesting...
    • 36. Xiao, D., Li,W., Han, M.: Dynamics in a ratio-dependent predator-prey model with predator harvesting. J. Math. Anal. Appl. 324(1), 14–29...
    • 37. Din, Q.: Dynamics of a discrete Lotka–Volterra model. Adv. Differ. Equ. 2013(1), 1–13 (2013)
    • 38. Kuznetsov, Y.A.: Elements of applied bifurcation theory. Appl. Math. Sci. 112, 591 (1998)
    • 39. Kuznetsov, Y.A., Meijer, H.G.: Numerical normal forms for CODIM 2 bifurcations of fixed points with at most two critical eigenvalues....
    • 40. Yuan, L.G., Yang, Q.G.: Bifurcation, invariant curve and hybrid control in a discrete-time predator-prey system. Appl. Math. Model. 39(8),...
    • 41. Alidousti, J., Eskandari, Z., Fardi, M., Asadipour, M.: Codimension two bifurcations of discrete Bonhoeffer–van der Pol oscillator model....
    • 42. Eskandari, Z., Alidousti, J.: Stability and codimension 2 bifurcations of a discrete-time SIR model. J. Frankl. Inst. 357(15), 10937–10959...
    • 43. Eskandari, Z., Alidousti, J.: Generalized flip and strong resonances bifurcations of a predator-prey model. Int. J. Dyn. Control 9, 275–287...
    • 44. Ghaziani, R.K., Govaerts, W., Sonck, C.: Resonance and bifurcation in a discrete-time predator-prey system with Holling functional response....
    • 45. Naik, P.A., Eskandari, Z., Shahraki, H.E.: Flip and generalized flip bifurcations of a two-dimensional discrete-time chemical model. Math....
    • 46. Eskandari, Z., Avazzadeh, Z., Ghaziani, R.K.: Theoretical and numerical bifurcation analysis of a predator–prey system with ratio-dependence....
    • 47. Naik, P.A., Eskandari, Z., Yavuz, M., Zu, J.: Complex dynamics of a discrete-time Bazykin– Berezovskaya prey-predator model with a strong...
    • 48. Naik, P.A., Eskandari, Z., Avazzadeh, Z., Zu, J.: Multiple bifurcations of a discrete-time prey-predator model with mixed functional response....
    • 49. Chen, G., Dong, X.: From Chaos to Order: Methodologies, Perspectives and Applications, vol. 24. World Scientific (1998)
    • 50. Pyragas, K.: Continuous control of chaos by self-controlling feedback. Phys. Lett. A 170(6), 421–428 (1992)
    • 51. Chen, G.: On some controllability conditions for chaotic dynamics control. Chaos, Solitons Fractals 8(9), 1461–1470 (1997)
    • 52. Ren, J., Yu, L.: Codimension-two bifurcation, chaos and control in a discrete-time information diffusion model. J. Nonlinear Sci. 26(6),...
    • 53. Luo, X.S., Chen, G., Wang, B.H., Fang, J.Q.: Hybrid control of period-doubling bifurcation and chaos in discrete nonlinear dynamical systems....
    • 54. Yu, P., Chen, G.: Hopf bifurcation control using nonlinear feedback with polynomial functions. Int. J. Bifurc. Chaos 14(05), 1683–1704...
    • 55. Chakraborty, K.: Ecological complexity and feedback control in a prey-predator system with Holling type-III functional response. Complexity...
    • 56. Din, Q.: Bifurcation analysis and chaos control in discrete-time glycolysis models. J. Math. Chem. 56(3), 904–931 (2018)
    • 57. Zhang, L., Zou, L.: Bifurcations and control in a discrete predator-prey model with strong Allee effect. Int. J. Bifurc. Chaos 28(05),...
    • 58. Chen, F., Ma, Z., Zhang, H.: Global asymptotical stability of the positive equilibrium of the Lotka– Volterra prey-predator model incorporating...
    • 59. López-Gómez, J., Ortega, R., Tineo, A.: The periodic predator-prey Lotka–Volterra model. Adv. Differ. Equ. 1(3), 403–423 (1996)
    • 60. MacDonald, N.: Time delay in prey-predator models. Math. Biosci. 28(3–4), 321–330 (1976)
    • 61. Deng, H., Chen, F., Zhu, Z., Li, Z.: Dynamic behaviors of Lotka–Volterra predator-prey model incorporating predator cannibalism. Adv....
    • 62. Ma, Z.: The research of predator-prey models incorporating prey refuges. Ph. D. Thesis, Lanzhou University, China (2010)
    • 63. De Oca, F.M., Vivas, M.: Extinction in a two dimensional Lotka–Volterra system with infinite delay. Nonlinear Anal. Real World Appl. 7(5),...
    • 64. Tang, S., Chen, L.: The periodic predator-prey Lotka–Volterra model with impulsive effect. J. Mech. Med. Biol. 2(03n04), 267–296 (2002)
    • 65. Guan, X., Liu, Y., Xie, X.: Stability analysis of a Lotka-Volterra type predator-prey system with allee effect on the predator species....
    • 66. Clark, C.W.: Mathematical models in the economics of renewable resources. SIAM Rev. 21(1), 81–99 (1979)
    • 67. Beddington, J.R., Cooke, J.: Harvesting from a prey-predator complex. Ecol. Model. 14(3–4), 155–177 (1982)
    • 68. Brauer, F., Soudack, A.: Stability regions in predator-prey systems with constant-rate prey harvesting. J. Math. Biol. 8(1), 55–71 (1979)
    • 69. Leard, B., Lewis, C., Rebaza, J.: Dynamics of ratio-dependent predator-prey models with nonconstant harvesting. Discrete Contin. Dyn....
    • 70. Singh, A., Malik, P.: Bifurcations in a modified leslie–gower predator–prey discrete model with michaelis–menten prey harvesting. J. Appl....
    • 71. Nie, L., Teng, Z., Hu, L., Peng, J.: The dynamics of a Lotka–Volterra predator-prey model with state dependent impulsive harvest for predator....
    • 72. Martin, A., Ruan, S.: Predator-prey models with delay and prey harvesting. J. Math. Biol. 43(3), 247–267 (2001)
    • 73. Xiao, D., Ruan, S.: Bogdanov–Takens bifurcations in predator-prey systems with constant rate harvesting. Fields Inst. Commun. 21, 493–506...
    • 74. Gupta, R., Chandra, P., Banerjee, M.: Dynamical complexity of a prey-predator model with nonlinear predator harvesting. Discrete Contin....
    • 75. Hu, D., Cao, H.: Bifurcation and chaos in a discrete-time predator-prey system of Holling and Leslie type. Commun. Nonlinear Sci. Numer....
    • 76. Hu, D., Cao, H.: Stability and bifurcation analysis in a predator-prey system with Michaelis–Menten type predator harvesting. Nonlinear...
    • 77. Singh, A., Sharma, V.S.: Codimension-2 bifurcation in a discrete predator–prey system with constant yield predator harvesting. Int. J....
    • 78. Doust, M.R.: The efficiency of harvested factor; Lotka–Volterra predator-prey model. Caspian J. Math. Sci. (CJMS) Peer 4(1), 51–59 (2015)
    • 79. Ak GÖzlem, G., Feckan, M.: Stability, Neimark–Sacker bifurcation and chaos control for a preypredator system with harvesting effect on...
    • 80. Elaydi, S.N.: Discrete Chaos: With Applications in Science and Engineering. Chapman and Hall/CRC (2007)
    • 81. Din, Q.: Stability, bifurcation analysis and chaos control for a predator-prey system. J. Vib. Control 25(3), 612–626 (2019)
    • 82. Fan, M., Wang, K.: Periodic solutions of a discrete-time nonautonomous ratio-dependent predator-prey system. Math. Comput. Model. 35(9–10),...
    • 83. Govaerts, W., Ghaziani, R.K., Kuznetsov, Y.A., Meijer, H.G.: Numerical methods for two-parameter local bifurcation analysis of maps. SIAM...
    • 84. Din, Q., Zulfiqar, M.A.: Qualitative behavior of a discrete predator-prey system under fear effects. Ze. Naturforsch. A 77(11), 1023–1043...
    • 85. Singh, A., Sharma, V.S.: Bifurcations and chaos control in a discrete-time prey-predator model with Holling type-II functional response...
    • 86. Sáez, E., González-Olivares, E.: Dynamics of a predator-prey model. SIAM J. Appl. Math. 59(5), 1867–1878 (1999)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno