Ir al contenido

Documat


A Gompertz mixture approach for modeling the evolution of the COVID-19 dynamics

  • Gonzalez Farias, Graciela [2] ; Vásquez Martínez, Roberto [1] ; Márquez Urbina, José Ulises [3] ; Ramos Quiroga, Rogelio [2] Árbol académico
    1. [1] Universidad de Guanajuato

      Universidad de Guanajuato

      México

    2. [2] CIMAT, Probability and Statistics, Research Center in Mathematics, Guanajuato, Mexico
    3. [3] CIMAT, Probability and Statistics, Research Center in Mathematics, Monterrey and National Council on Science and Technology (CONACYT), Monterrey, Mexico
  • Localización: Revista de Matemática: Teoría y Aplicaciones, ISSN 2215-3373, ISSN-e 2215-3373, Vol. 30, Nº. 1, 2023 (Ejemplar dedicado a: Revista de Matemática: Teoría y Aplicaciones), págs. 141-172
  • Idioma: inglés
  • DOI: 10.15517/rmta.v30i1.50927
  • Títulos paralelos:
    • Mezcla de Gompertz para modelar la evolución de la dinámica del COVID-19
  • Enlaces
  • Resumen
    • español

      Diferentes países usaron la función de crecimiento Gompertz al principio de la pandemia por COVID-19 para modelar el numero acumulado de infectados dado que proporcionaba un ajuste razonable. Este modelo permite una única moda, pero la pandemia evoluciono exhibiendo un comportamiento multimodal debido a las diferentes olas y variantes del COVID-19. Por tanto, el modelo Gompertz clásico de crecimiento no ajusta bien para describir una pandemia larga con diferentes variantes del virus. Este trabajo presenta generalizaciones del modelo Gompertz donde se pueda capturar un comportamiento multimodal para modelar la dinámica de los casos infectados. Este modelo es aplicado a datos de COVID-19 de Nuevo León, México.

    • English

      Different countries used the growth Gompertz function at the beginning of the COVID-19 pandemic to model the number of cumulative infected cases since it provides reasonable results. Such a model allows only one mode, but the pandemic evolution has exhibited a multimodal behavior due to the different waves and variants of the COVID-19 virus. Thus, Gompertz’s classical growth model is not well suited to describe a long pandemic with different virus variants. This work presents generalizations of the Gompertz model that can reproduce a multimodal behavior to model the dynamics of infected cases. The models are applied to COVID-19 data from Nuevo Leon, Mexico.

  • Referencias bibliográficas
    • I. Ahmed, G. U. Modu, A. Yusuf, P. Kumam, I. Yusuf, A mathematical model of Coronavirus Disease (COVID-19) containing asymptomatic and symptomatic...
    • M. Catala, D. Pino, M. Marchena, P. Palacios, T. Urdiales, P.-J. Cardona, S. Alonso, D. Lopez-Codina, C. Prats, E. Alvarez-Lacalle, Robust...
    • S. Coles, An introduction to statistical modeling of extreme values. Springer Series in Statistics. Springer-Verlag London, Ltd., London,...
    • CONACYT, Estimaciones de la Tasa de Reproduccion Efectiva Rt de COVID-19 para los Estados y Zonas Metropolitanas de Mexico. 2022. URL: https://salud.conacyt.mx/coronavirus/investigacion/productos/....
    • CONACYT, Vigilancia de variantes del virus SARS-CoV-2. 2022. URL: https://salud.conacyt.mx/coronavirus/variantes/. Accessed: 30-Apr-2022,...
    • C. Gourieroux, J. Jasiak, Time varying Markov process with partially observed aggregate data: An application to coronavirus. J. Econometrics...
    • T. Hastie, R. Tibshirani, J. Friedman, The elements of statistical learning. Springer Series in Statistics. Springer, New York, 2009, xxii+745....
    • J. D. Kalbfleisch, R. L. Prentice, The statistical analysis of failure time data.Wiley Series in Probability and Statistics.Wiley-Interscience,...
    • J. U. Marquez Urbina, G. Gonzalez Farias, L. L. Ramirez Ramirez, D. I. Rodriguez Gonzalez, A multi-source global-local model for epidemic...
    • A. W. Marshall, I. Olkin, Life distributions. Springer Series in Statistics. Structure of nonparametric, semiparametric, and parametric families....
    • L. Martino, D. Luengo, J. Miguez, Independent random sampling methods. Statistics and Computing. Springer, Cham, 2018, xii+280. DOI: 10.1007/978-3-319-72634-2
    • G. McLachlan, A. Ng, P. Adams, D. C. McGiffin, A. Gailbraith, An algorithm for fitting mixtures of Gompertz distributions to censored survival...
    • G. McLachlan, D. Peel, Finite mixture models. Wiley Series in Probability and Statistics: Applied Probability and Statistics. Wiley-Interscience,...
    • G. J. McLachlan, T. Krishnan, The EM algorithm and extensions. Wiley Series in Probability and Statistics. Wiley-Interscience, Hoboken, NJ,...
    • Mexican Government, Datos Abiertos Direccion General de Epidemiologia. 2022. URL: https://www.gob.mx/salud/documentos/datos-abiertos-152127....
    • Mexico’s Secretariat of Health, Sistemas de Informacion de la Red IRAG. 2021. URL: https://www.gits.igg.unam.mx/red-iragdashboard/reviewHome....
    • C. Murray et al., Forecasting COVID-19 impact on hospital bed-days, ICU-days, ventilator-days and deaths by US state in the next 4 months....
    • J. Nocedal, S. J. Wright, Numerical optimization. Second. Springer Series in Operations Research and Financial Engineering. Springer, New...
    • J. Pickands, Statistical inference using extreme order statistics. Ann. Statist. 3(1975), 119–131. URL: http : / / links . jstor . org /sici?sici=00905364(197501)3:1%3C119:SIUEOS%3E2.0.CO;2-O&origin=MSN.
    • M. A. Pinsky, S. Karlin, An introduction to stochastic modeling. Elsevier/Academic Press, Amsterdam, 2011, x+563. DOI: 10.1016/B978-0-12-381416-6.00001-0
    • S. I. Resnick, Extreme values, regular variation, and point processes. Vol. 4. Springer Science & Business Media, 2008.
    • H. Rinne, The Hazard Rate: Theory and Inference (with Supplementary MATLAB-Programs). 2014. URL: https://books.google.co.cr/books?id=welNuwEACAAJ.
    • G. R. Shinde, A. B. Kalamkar, P. N. Mahalle, N. Dey, J. Chaki, A. E. Hassanien, Forecasting models for coronavirus disease (COVID-19): a survey...
    • K. Systrom, Estimating COVID-19’s in Real-Time. 2022. URL: https://github.com/k-sys/covid-19/blob/master/Realtime%20R0.ipynb.
    • T. M. Therneau, P. M. Grambsch, Modeling survival data: extending the Cox model. Statistics for Biology and Health. Springer-Verlag, New York,...
    • K. M. Tjorve, E. Tjorve, The use of Gompertz models in growth analyses, and new Gompertz-model approach: An addition to the Unified-Richards...
    • C. P. Winsor, The Gompertz curve as a growth curve. Proceedings of the national academy of sciences 18(1932), no. 1, 1–8.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno