Ir al contenido

Documat


Information quantifiers and unpredictability in the COVID-19 time-series data

  • Vampa, Victoria [1] ; Kowalski, Andrés M. [2] ; Losada, Marcelo [3] ; Portesi, Mariela [2] ; Holik, Federico [2]
    1. [1] Universidad Nacional de La Plata

      Universidad Nacional de La Plata

      Argentina

    2. [2] Instituto de Física La Plata

      Instituto de Física La Plata

      Argentina

    3. [3] Universidad Nacional de Córdoba

      Universidad Nacional de Córdoba

      Argentina

  • Localización: Revista de Matemática: Teoría y Aplicaciones, ISSN 2215-3373, ISSN-e 2215-3373, Vol. 30, Nº. 1, 2023 (Ejemplar dedicado a: Revista de Matemática: Teoría y Aplicaciones), págs. 1-23
  • Idioma: inglés
  • DOI: 10.15517/rmta.v30i1.50554
  • Títulos paralelos:
    • Cuantificadores de información e impredictibilidad en las series temporales asociadas a la COVID-19
  • Enlaces
  • Resumen
    • español

      Aplicamos diferentes cuantificadores de informacion al estudio de series temporales de COVID-19. En primer lugar, analizamos como el hecho de suavizar las curvas altera el contenido de informacion de la serie, aplicando la entropia de permutaciones y la entropia wavelet a la serie de casos diarios nuevos mediante un metodo de ventana movil. Ademas, para estudiar que tan acopladas estan las curvas asociadas con los nuevos casos diarios de infecciones y muertes, calculamos la coherencia wavelet. Nuestros resultados muestran como se pueden utilizar cuantificadores de información para analizar el comportamiento impredecible de esta pandemia en el corto y mediano plazo.

    • English

      We apply different information quantifiers to the study of COVID-19 time series. First, we analyze how the fact of smoothing the curves alters the informational content of the series, by applying the permutation and wavelet entropies to the series of daily new cases using a sliding-window method. In addition, to study how coupled the curves associated with daily new cases of infections and deaths are, we compute the wavelet coherence. Our results show how information quantifiers can be used to analyze the unpredictable behavior of this pandemic in the short and medium terms.

  • Referencias bibliográficas
    • M. B. Arouxet, A. F. Bariviera, V. E. Pastor, V. Vampa, COVID-19 impact on cryptocurrencies: evidence from a wavelet-based Hurst exponent,...
    • C. Bandt, B. Pompe, Permutation entropy: a natural complexity measure for time series, Phys. Rev. Lett. 88(2002), 174102. Doi: 10.1103/PhysRevLett.88.174102
    • S. Blanco, A. Figliola, R. Quian Quiroga, O.A. Rosso, E. Serrano, Time-frequency analysis of electroencephalogram series. III. Wavelet packets...
    • C. Chum, An Introduction to Wavelets, Academic Press, New York, 1992. Available from: https://www.elsevier.com/books/an-introduction-to-wavelets/chui/978-0-12-174592-9.
    • J. Contreras-Reyes, Fisher information and uncertainty principle for skewgaussian random variables, Fluctuation and Noise Letters 20(2021)...
    • I. Daubechies, Ten Lectures on Wavelets, SIAM, 61, 1992. Doi:
    • 1.9781611970104.fm
    • L. Fernandes, F. Araujo, M. Silva, B. Acioli-Santos, Predictability of COVID-19 worldwide lethality using permutation-information theory quantifiers,...
    • L. Fernandes, F. De Araujo, J. Silva, M. Silva, Insights into the predictability and similarity of COVID-19 worldwide lethality, Fractals...
    • L. Gamero, A. L. Plastino, M. E. Torres, Wavelet analysis and nonlinear dynamics in a nonextensive setting, Physica A 246(1997), 487-509....
    • M. Henry, G. Judge, Permutation entropy & information recovery in nonlinear dynamic economic time series, Econometrics 7(2019) no. 1,...
    • A. M. Kowalski, M. Portesi, V. Vampa, M. Losada, F. Holik, Entropy-based informational study of the COVID-19 series of data, Mathematics 10(2022),...
    • A. M. Kowalski, R. Rossignoli, E.M.F. Curado, Eds. Concepts and Recent Advances in Generalized Information Measures and Statistics, Bentham...
    • M. Kumar, R. Pachori, U. Acharya, Automated diagnosis of myocardial infarction ECG signals using sample entropy in flexible analytic wavelet...
    • X. Li, G. Ouyang, D. Richards, Predictability analysis of absence seizures with permutation entropy, Epilepsy Research 77(2007), 70-74. Doi:...
    • D. Meintrup, M. Nowak-Machen, S. Borgmann, Nine Months of COVID-19 Pandemic in Europe: A Comparative Time Series Analysis of Cases and Fatalities...
    • Doi: 10.3390/ijerph18126680
    • F. Mitroi-Symeonidis, I. Anghel, O. Lalu, C. Popa, The Permutation Entropy and its Applications on Fire Tests Data, J. Appl. Comput. Mech....
    • Doi: 10.22055/jacm.2020.34707.2464f
    • F. Mitroi-Symeonidis, I. Anghel, A. Tozzi, Preventing a COVID-19 pandemic flashover (electronic response to: Day M. 2020. Covid-19: identifying...
    • O. Nicolis, J. Mateu, J. Contreras-Reyes, Wavelet-Based Entropy Measures to Characterize Two-Dimensional Fractional Brownian Fields, Entropy...
    • G. Ouyang, Permutation entropy, 2021. Available at: https://www.mathworks.com/matlabcentral/fileexchange/37289-permu
    • tation-entropy. Retrieved June 23, 2021.
    • F. Olivares, A. L. Plastino, O. A. Rosso, Ambiguities in Bandt-Pompe’s methodology for local entropic quantifiers, Physica A 391(2012), 2518-2526....
    • G. Ouyang, J. Li, X. Liu, X. Li, Dynamic characteristics of absence EEG recordings with multiscale permutation entropy analysis, Epilepsy...
    • Doi: j.eplepsyres.2012.11.003
    • H. Ritchie, E. Ortiz-Ospina, D. Beltekian, E. Mathieu, J Hasell, B. Macdonald, C. Giattino, C. Appel, L. Rodes-Guirao, M. Roser, Coronavirus...
    • O. A. Rosso, H. Larrondo, M. T. Martin, A. L. Plastino, M. Fuentes, Distinguishing Noise from Chaos, Phys. Rev. Lett. 99(2007) 154102. Doi:...
    • O. A. Rosso, L. De Micco, H. Larrondo, M. Martin, A. L. Plastino, Generalized statistical complexity measure, Int. J. Bif. and Chaos 20(2010),...
    • O. A. Rosso, L. De Micco, A. L. Plastino, H. Larrondo, Info-quantifiers’ map-characterization revisited. Physica A 389(2010), 4604-4612. Doi:...
    • V. Solovieva, A. Bielinskyia, N. Kharadzjana. Coverage of the coronavirus pandemic through entropy measures, in: CS & SE SW 2020: 3rd...
    • C. Torrence, G. Compo. A, Practical Guide toWavelet Analysis, Bulletin of the American Meteorological Society, 79(1998): no. 1. Doi: 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
    • E. Valverde, G. Clemente, P. Arini, V. Vampa, Wavelet-based entropy and complexity to identify cardiac electrical instability in patients...
    • M. Zanin, L. Zunino, O. A. Rosso, D. Papo, Permutation entropy and its main biomedical and econophysics applications: a review, Entropy 14(2012),...
    • S. Zozor, M. Portesi, P. W. Lamberti, G. M. Bosyk, J. F. Bercher (Eds), Entropies, Divergences, Information, Identities and Inequalities,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno