Ir al contenido

Documat


A KAM Theorem with Large Twist and Finite Smooth Large Perturbation

  • Lu Chen [1]
    1. [1] Quzhou University

      Quzhou University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 22, Nº 3, 2023
  • Idioma: inglés
  • Enlaces
  • Resumen
    • We study non-degenerate Hamiltonian systems of the form H(θ , t, I) = H0(I) εa + P(θ , t, I) εb , where (θ , t, I) ∈ Td+1× [1, 2] d (T := R/2πZ), a, b are given positive constants with a > b, H0 : [1, 2] d → R is real analytic and P : Td+1 × [1, 2] d → R is C with = 2(d+1)(5a−b+2ad) a−b + μ, 0 < μ 1. We prove that, for the above Hamiltonian system, if ε is sufficiently small, there is an invariant torus with given Diophantine frequency vector which obeys conditions (1.7) and (1.8). As for application, a finite network of Duffing oscillators with periodic external forces possesses Lagrange stability for almost all initial data.

  • Referencias bibliográficas
    • 1. Chatterjee, A.K., Kundu, A., Kulkarni, M.: Spatiotemporal spread of perturbations in a driven dissipative Duffing chain: an out-of-time-ordered...
    • 2. Chierchia, L.: Kolmogorov-Arnold-Moser (KAM) Theory. Mathematics of Complexity and Dynamical Systems, vol. 1–3, pp. 810–836. Springer,...
    • 3. Dieckerhoff, R., Zehnder, E.: Boundedness of solutions via the twist theorem. Ann. Sc. Norm. Super. Pisa 14(1), 79–95 (1987)
    • 4. Graef, J.R.: On the generalized Lienard equation with negative damping. J. Differ. Equ. 12, 34–62 (1972)
    • 5. Jiao, L., Piao, D., Wang, Y.: Boundedness for the general semilinear Duffing equations via the twist theorem. J. Differ. Equ. 252(1), 91–113...
    • 6. Kiss, I.Z., Zhai, Y.M., Hudson, J.L.: Resonance clustering in globally coupled electrochemical oscillators with external forcing. Phys....
    • 7. Kovaleva, A.: Capture into resonance of coupled Duffing oscillators. Phys. Rev. E 92(2), 022909 (2015)
    • 8. Laederich, S., Levi, M.: Invariant curves and time-dependent potential. Ergod. Theory Dyn. Syst. 11(2), 365–378 (1991)
    • 9. Levinson, N.: On the existence of periodic solutions for second order differential equations with a forcing term. J. Math. Phys. 32, 41–48...
    • 10. Li, J., Qi, J., Yuan, X.: KAM theorem for reversible mapping of low smoothness with application (2019). arXiv:1910.08214v1 [math.DS]
    • 11. Liu, B.: Boundedness for solutions of nonlinear Hill’s equations with periodic forcing terms via Moser’s twist theorem. J. Differ. Equ....
    • 12. Liu, B.: Boundedness for solutions of nonlinear periodic differential equations via Moser’s twist theorem. Acta Math. Sin. (N.S.) 8(1),...
    • 13. Morris, G.R.: A case of boundedness of Littlewood’s problem on oscillatory differential equations. Bull. Aust. Math. Soc. 14(1), 71–93...
    • 14. Moser, J.: On invariant curves of area-preserving mapping of annulus. Nachr. Akad. Wiss. Gottingen Math. Phys. 2, 1–20 (1962)
    • 15. Moser, J.: Stable and RandomMotion in Dynamical Systems. Annals ofMathematics Studies. Princeton University Press, Princeton (1973)
    • 16. Peng, Y., Piao, D., Wang, Y.: Longtime closeness estimates for bounded and unbounded solutions of non-recurrent Duffing equations with...
    • 17. Pöschel, J.: A lecture on the classical KAM theorem. Proc. Symp. Pure Math. 69, 707–732 (2001)
    • 18. Reuter, G.E.H.: A boundedness theorem for nonlinear differential equations of the second order. Proc. Camb. Philos. Soc. 47, 49–54 (1951)
    • 19. Rüssmann, H.: On optimal estimates for the solutions of linear partial differential equations of first order with constant coefficients...
    • 20. Rüssmann, H.: On the existence of invariant curves of twist mappings of an annulus. In: Geometric Dynamics, pp. 677–718. Springer (1983)
    • 21. Salamon, D.A.: The Kolmogorov-Arnold-Moser theorem. Math. Phys. Electron. J. 10(3), 1–37 (2004)
    • 22. Sarkar, P., Ray, D.S.: Vibrational antiresonance in nonlinear coupled systems. Phys. Rev. E 99(5), 052221 (2019)
    • 23. Shena, J., Lazarides, N., Hizanidis, J.: Multi-branched resonances, chaos through quasiperiodicity, and asymmetric states in a superconducting...
    • 24. Wang, Y.: Unboundedness in a Duffing equation with polynomial potentials. J. Differ. Equ. 160(2), 467–479 (2000)
    • 25. Yuan, X.: Invariant tori of Duffing-type equations. J. Differ. Equ. 142(2), 231–262 (1998)
    • 26. Yuan, X.: Lagrange stability for Duffing-type equations. J. Differ. Equ. 160(1), 94–117 (2000)
    • 27. Yuan, X.: Boundedness of solutions for Duffing equation with low regularity in time. Chin. Ann. Math. Ser. B 38(5), 1037–1046 (2017)
    • 28. Yuan, X., Chen, L., Li, J.: The KAM theorem with a large perturbation and application to the network of Duffing oscillators. Sci. China...
    • 29. Zehnder, E.: Generalized implicit function theorems with applications to some small divisor problems I and II. Comm. Pure Appl. Math....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno