Ir al contenido

Documat


Analysis of Neutral Fractional Differential Equation via the Method of Upper and Lower Solution

  • Kanika Dhawan [1] ; Ramesh Kumar Vats [1] ; V. Vijayakumar [2]
    1. [1] National Institute Of Technology

      National Institute Of Technology

      Japón

    2. [2] Vellore Institute of Technolog
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 22, Nº 3, 2023
  • Idioma: inglés
  • Enlaces
  • Resumen
    • This manuscript is concerned about the study of the existence of solutions for the class of nonlinear neutral Caputo-Hadamard fractional differential equations including integral terms. In order to establish the necessary conditions of solvability for the proposed problem, we apply the semi-group property of Hadamard fractional integral operator. Also, under the appropriate conditions, we demonstrate that the solution set for the proposed problem is non-empty by using Arzelá-Ascoli theorem and the method of upper and lower solutions. In contrast to the fundamental results graphical example is also presented in order to validate the findings.

  • Referencias bibliográficas
    • 1. Das, S., Pan, I.: Fractional order signal processing: introductory concepts and applications. Springer Science & Business Media (2011)
    • 2. Goto, M., Ishii, D.: Semidifferential electroanalysis. J. electroanal. chem. 61, 361–365 (1975)
    • 3. Freed, A., Diethelm, K., Luchko, Y.: Fractional-Order Viscoelasticity (fov): Constitutive Development using The Fractional Calculus: First...
    • 4. Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional calculus: Models and numerical methods Series on Complexity, non-linearity...
    • 5. Mainardi, F.: Fractional calculus and waves in linear viscoelasticity: An introduction to mathematical models. Imperial College Press,...
    • 6. Dhawan, K., Vats, R.K., Agarwal, R.P.: Qualitative analysis of couple fractional differential equations involving Hilfer Derivative. An....
    • 7. Wu, G.C., Baleanu, D., Zeng, S.D.: Discrete chaos in fractional sine and standard maps. Phys. Lett. A 378, 484–87 (2014)
    • 8. Magin, R.L.: Fractional calculus in bioengineering. Begell House, Redding (2006)
    • 9. Anastasio, T.J.: The fractional-order dynamics of brainstem vestibulo-oculomotor neurons. Biol. Cybern. 72, 69–79 (1994)
    • 10. Gaul, L., Klein, P., Kemple, S.: Damping description involving fractional operators. Mech. Syst. Signal Process. 5(2), 81–88 (1991)
    • 11. Dadras, S., Momeni, H.R.: Control of a fractional-order economical system via sliding mode. Phys. A: Stat. Mech. Appl. 389, 2434–2442...
    • 12. Caponetto, R.: Fractional Order Systems: Modeling and Control Applications. World Scientific, Singapore (2010)
    • 13. Marazzato, R., Sparavigna, AC.: Astronomical image processing based on fractional calculus: the astrofractool. (2009) arXiv preprint arXiv:0910.4637
    • 14. Robinson, D.: The use of control systems analysis in the neurophysiology of eye movements. Annu. Rev. Neurosci. 4, 463–503 (1981)
    • 15. Babusci, D., Dattoli, G., Sacchetti, D.: The Lamb-Bateman integral equation and the fractional derivatives. Fract. Calc. Appl. 14(2),...
    • 16. Liang, Y., Wang, S., Chen, W., Zhou, Z., Magin, R.L.: A survey of models of ultraslow diffusion in heterogeneous materials. Appl. Mech....
    • 17. Zhang, X., Xu, P., Wu, Y., Wiwatanapataphee, B.: The uniqueness and iterative properties of solutions for a general Hadamard-type singular...
    • 18. Nain, A.K., Vats, R.K., Kumar, A.: Coupled fractional differential equations involving CaputoHadamard derivative with nonlocal boundary...
    • 19. Zhang, X., Yu, L., Jiang, J., Wu, Y., Cui, Y.: Solutions for a singular Hadamard-type fractional differential equation by the spectral...
    • 20. Vijayakumar, V., Ravichandran, C., Murugesu, R.: Existence of mild solutions for nonlocal Cauchy problem for fractional neutral evolution...
    • 21. Kilbas, A.A.: Hadamard-type fractional calculus. J. Korean Math. Soci. 38(6), 1191–1204 (2001)
    • 22. Pooseh, S., Almeida, R., Torres, D.F.M.: Expansion formulas in terms of integer-order derivatives for the Hadamard fractional integral...
    • 23. Jarad, F., Abdeljawad, T., Baleanu, D.: Caputo-type modification of the Hadamard fractional derivatives. Adv. Differ. Equ. 2012(1), 1–8...
    • 24. Gambo, Y.Y., Jarad, F., Baleanu, D., Abdeljawad, T.: On Caputo modification of the Hadamard fractional derivatives. Adv. Differ. Equ....
    • 25. Shukla, A., Sukavanam, N., Pandey, D.N.: Approximate controllability of semilinear fractional stochastic control system. Asian-Eur. J....
    • 26. Shukla, A., Sukavanam, N., Pandey, D.N., Arora, U.: Approximate controllability of second-order semilinear control system. Circ. Syst....
    • 27. Shukla, A., Sukavanam, N., Pandey, DN.: Approximate controllability of semilinear fractional control systems of order α ∈ (1, 2]. in 2015...
    • 28. Shukla, A., Sukavanam, N., Pandey, D.N.: Controllability of semilinear stochastic system with multiple delays in control. IFAC Proceed....
    • 29. Shukla, A., Sukavanam, N., Pandey, D.N.: Complete controllability of semilinear stochastic systems with delay in both state and control....
    • 30. Almeida, R.: Caputo-Hadamard fractional derivatives of variable order. Numer. Funct. Anal. Optim. 38(1), 1–9 (2017)
    • 31. Gohar, M., Li, C., Yin, C.: On Caputo-Hadamard fractional differential equations. Int. J. Comput. Math. 97(7), 1459–83 (2020)
    • 32. Talib, I., Bohner, M.: Numerical study of generalized modified Caputo fractional differential equations. Int. J. Comput. Math. 100(1),...
    • 33. Asif, N.A., Talib, I.: Existence of solutions to second order nonlinear coupled system with nonlinear coupled boundary conditions. Electron....
    • 34. Bellen, A., Guglielmi, N., Ruehli, A.E.: Methods for linear systems of circuit delay differential equations of neutral type. IEEE Trans....
    • 35. Dubey, R.S.: Approximations of solutions to abstract neutral functional differential equation. Numer. Funct. Anal. Optim. 32(3), 286–308...
    • 36. Xiang, Z., Liu, S., Mahmoud, M.S.: Robust H∞ reliable control for uncertain switched neutral systems with distributed delays. IMA J. Math....
    • 37. Liu, S., Wang, G., Zhang, L.: Existence results for a coupled system of nonlinear neutral fractional differential equations. Appl. Math....
    • 38. Zhou, X.F., Yang, F., Jiang, W.: Analytic study on linear neutral fractional differential equations. Appl. Math. Comput. 257, 295–307...
    • 39. Jeet, K., Bahuguna, D.: Approximate controllability of nonlocal neutral fractional integro-differential equations with finite delay. J....
    • 40. Kavitha, K., Vijayakumar, V., Udhayakumar, R., Nisar, K.S.: Results on the existence of Hilfer fractional neutral evolution equations...
    • 41. Vijayakumar, V., Aldosary, S.F., Nisar, K.S., Alsaadi, A.: Exact controllability results for Sobolev-type Hilfer fractional neutral delay...
    • 42. Chaudhary, R., Pandey, D.N.: Monotone iterative technique for neutral fractional differential equation with infinite delay. Math. Methods...
    • 43. Batool, A., Talib, I., Bourguiba, R., Suwan, I., Abdeljawad, T., Riaz, M.B.: A new generalized approach to study the existence of solutions...
    • 44. Lakshmikantham, V., Vatsala, A.S.: General uniqueness and monotone iterative technique for fractional differential equations. Appl. Math....
    • 45. Darzi, R., Mohammadzadeh, B., Neamaty, A., Baleanu, D.: Lower and upper solutions method for positive solutions of fractional boundary...
    • 46. Liu, X., Jia, M.: The method of lower and upper solutions for the general boundary value problems of fractional differential equations...
    • 47. Zhang, X., Kong, D., Tian, H., Wu, Y., Wiwatanapataphee, B.: An upper-lower solution method for the eigenvalue problem of Hadamard-type...
    • 48. Bouazza, Z., Souhila, S., Etemad, S., Souid, M.S., Akgul, A., Rezapour, S., De la Sen, M.: On the Caputo-Hadamard fractional IVP with...
    • 49. Batool, A., Talib, I., Riaz, M.B., Tunç, C.: Extension of lower and upper solutions approach for generalized nonlinear fractional boundary...
    • 50. Talib, I., Asif, N.A., Tunc, C.: Coupled lower and upper solution approach for the existence of solutions of nonlinear coupled system...
    • 51. Bai, Y., Kong, H.: Existence of solutions for non-linear Caputo-Hadamard fractional differential equations via the method of upper and...
    • 52. Gambo, Y.Y., Jarad, F., Baleanu, D., Abdeljawad, T.: On Caputo modification of the Hadamard fractional derivatives. Adv. Differ. Equ....
    • 53. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and applications of fractional differential equations. Elsevier Science, Amsterdam...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno