Ir al contenido

Documat


Global Stability for an Endogenous-Reactivated Tuberculosis Model with Beddington–DeAngelis Incidence, Distributed Delay and Relapse

  • Yuan Sang [1] ; Long Zhang [1] ; Bing Song [1] ; Yuru Zhang [1]
    1. [1] Xinjiang University

      Xinjiang University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 22, Nº 3, 2023
  • Idioma: inglés
  • Enlaces
  • Resumen
    • A tuberculosis (TB) epidemic model with Beddington–DeAngelis incidence and distributed delay is proposed to characterize the interaction between latent period, endogenous reactivation, treatment of latent TB infection, as well as relapse. The basic reproduction number R0 is defined, and the globally asymptotic stability of disease-free equilibrium is shown when R0 < 1, while if R0 > 1 the globally asymptotic stability of endemic equilibrium is also acquired. Theoretical results are validated through performing numerical simulations, wherein we detect that TB dynamic behavior between models with discrete and distributed delays could be same and opposite, and TB is more persistent in the model with distributed delay. Besides, increasing the protection level of susceptible and infectious individuals is crucial for the control of TB.

  • Referencias bibliográficas
    • 3. Gill, C.M., Dolan, L., Piggott, L.M., McLaughlin, A.M.: New developments in tuberculosis diagnosis and treatment. Breathe 18(1), 1–15 (2022)....
    • 4. Jansen-Aaldring, N., van de Berg, S., van den Hof, S.: Patient support during treatment for active tuberculosis and for latent tuberculosis...
    • 5. Chaisson, R.E., Churchyard, G.J.: Recurrent tuberculosis: relapse, reinfection, and HIV. J. Infect. Dis. 201(5), 653–655 (2010). https://doi.org/10.1086/650531
    • 6. Das, D.K., Khajanchi, S., Kar, T.: Transmission dynamics of tuberculosis with multiple re-infections. Chaos Solitons Fractals 130, 109450...
    • 7. Zhang, Y., Huo, H., Xiang, H.: Dynamics of tuberculosis with fast and slow progression and media coverage. Math. Biosci. Eng. 16(3), 1150–1170...
    • 8. Lillebaek, T., Dirksen, A., Baess, I., Strunge, B., Thomsen, V.Ø., Andersen, Å.B.: Molecular evidence of endogenous reactivation of Mycobacterium...
    • 9. Blower, S.M., Mclean, A.R., Porco, T.C., Small, P.M., Hopewell, P.C., Sanchez, M.A., Moss, A.R.: The intrinsic transmission dynamics of...
    • 10. Song, B., Castillo-Chavez, C., Aparicio, J.P.: Tuberculosis models with fast and slow dynamics: the role of close and casual contacts....
    • 11. Huo, H., Feng, L.: Global stability for an HIV/AIDS epidemic model with different latent stages and treatment. Appl. Math. Model. 37(3),...
    • 12. Castillo-Chavez, C., Feng, Z.: To treat or not to treat: the case of tuberculosis. J. Math. Biol. 35(6), 629–656 (1997). https://doi.org/10.1007/s002850050069
    • 13. Colijn, C., Cohen, T., Murray, M.: Emergent heterogeneity in declining tuberculosis epidemics. J. Theor. Biol. 247(4), 765–774 (2007)....
    • 14. Okuonghae, D.: A note on some qualitative properties of a tuberculosis differential equation model with a time delay. Differ. Equ. Dyn....
    • 15. Feng, Z., Castillo-Chavez, C., Capurro, A.F.: A model for tuberculosis with exogenous reinfection. Theor. Popul. Biol. 57(3), 235–247...
    • 16. Porco, T.C., Blower, S.M.: Quantifying the intrinsic transmission dynamics of tuberculosis. Theor. Popul. Biol. 54(2), 117–132 (1998)....
    • 17. Feng, Z., Huang, W., Castillo-Chavez, C.: On the role of variable latent periods in mathematical models for tuberculosis. J. Dyn. Differ....
    • 18. Omame, A., Okuonghae, D., Umana, R., Inyama, S.: Analysis of a co-infection model for HPV-TB. Appl. Math. Model. 77, 881–901 (2020). https://doi.org/10.1016/j.apm.2019.08.012
    • 19. Shah, N.H., Sheoran, N., Shah, Y.: Dynamics of HIV-TB co-infection model. Axioms 9(1), 29 (2020). https://doi.org/10.3390/axioms9010029
    • 20. Martcheva, M.: An Introduction to Mathematical Epidemiology. Springer, New York (2015)
    • 21. Zhou, X., Zhang, L., Zheng, T., Li, H., Teng, Z.: Global stability for a delayed HIV reactivation model with latent infection and Beddington–DeAngelis...
    • 22. Chen, W., Teng, Z., Zhang, L.: Global dynamics for a drug-sensitive and drug-resistant mixed strains of HIV infection model with saturated...
    • 23. Xu, R.: Global dynamics of an SEIRI epidemiological model with time delay. Appl. Math. Comput. 232, 436–444 (2014). https://doi.org/10.1016/j.amc.2014.01.100
    • 24. Zheng, T., Luo, Y., Zhou, X., Zhang, L., Teng, Z.: Spatial dynamic analysis for COVID-19 epidemic model with diffusion and Beddington–Deangelis...
    • 25. Li, B., Yuan, S., Zhang, W.: Analysis on an epidemic model with a ratio-dependent nonlinear incidence rate. Int. J. Biomath. 4(02), 227–239...
    • 26. Gerberry, D.J.: Practical aspects of backward bifurcation in a mathematical model for tuberculosis. J. Theor. Biol. 388, 15–36 (2016)....
    • 27. Cai, Y., Zhao, S., Niu, Y., Peng, Z., Wang, K., He, D., Wang, W.: Modelling the effects of the contaminated environments on tuberculosis...
    • 28. Zhang, J., Feng, G.: Global stability for a tuberculosis model with isolation and incomplete treatment. Comput. Appl. Math. 34(3), 1237–1249...
    • 29. Xu, R., Ma, Z.: Global stability of a delayed SEIRS epidemic model with saturation incidence rate. Nonlinear Dyn. 61(1), 229–239 (2010)....
    • 30. Baba, I.A., Abdulkadir, R.A., Esmaili, P.: Analysis of tuberculosis model with saturated incidence rate and optimal control. Physica A...
    • 31. Huang, G., Takeuchi, Y., Ma, W., Wei, D.: Global stability for delay SIR and SEIR epidemic models with nonlinear incidence rate. Bull....
    • 32. McCluskey, C.C.: Complete global stability for an SIR epidemic model with delay-distributed or discrete. Nonlinear Anal. Real World Appl....
    • 33. Djillali, S., Bentout, S., Touaoula, T.M., Tridane, A.: Global dynamics of alcoholism epidemic model with distributed delays. Math. Biosci....
    • 34. Beretta, E., Takeuchi, Y.: Global stability of an SIR epidemic model with time delays. J. Math. Biol. 33(3), 250–260 (1995). https://doi.org/10.1007/BF00169563
    • 35. Beretta, E., Takeuchi, Y.: Convergence results in SIR epidemic models with varying population sizes. Nonlinear Anal. Theory Methods. Appl....
    • 36. Liu, Y., Zhang, X.X., Yu, J.J., Liang, C., Xing, Q., Yao, C., Li, C.Y.: Tuberculosis relapse is more common than reinfection in Beijing,...
    • 37. Luzze, H., Johnson, D., Dickman, K., Mayanja-Kizza, H., Okwera, A., Eisenach, K., Cave, M., Whalen, C., Johnson, J., Boom, W.: Relapse...
    • 38. Hale, J.K., Lunel, S.M.V.: Introduction to Functional Differential Equations. Springer, New York (2013)
    • 39. LaSalle, J.P.: The Stability of Dynamical Systems. SIAM, Philadelphia (1976)
    • 40. Yan, D., Cao, H.: The global dynamics for an age-structured tuberculosis transmission model with the exponential progression rate. Appl....
    • 41. China Statistical Yearbook. http://www.stats.gov.cn/tjsj/ndsj/ (2022)
    • 42. 2022 National Statutory Profiles of Infectious Disease. https://www.chinacdc.cn/ (2022)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno