Ir al contenido

Documat


Existencia de Soluciones Radiales para Problemas Semilineales Elípticos Indefinidos

  • Calahorrano, Marco [1] ; Cevallos, Israel [1]
    1. [1] Escuela Politécnica Nacional

      Escuela Politécnica Nacional

      Quito, Ecuador

  • Localización: Selecciones Matemáticas, ISSN-e 2411-1783, Vol. 7, Nº. 1, 2020 (Ejemplar dedicado a: January - July), págs. 42-51
  • Idioma: español
  • DOI: 10.17268/sel.mat.2020.01.05
  • Títulos paralelos:
    • Existence of radial solutions for indefinite semilinear elliptic equations
  • Enlaces
  • Resumen
    • español

      Se estudia la existencia de soluciones radiales de problemas semilineales elípticos indefinidos sobre la bola unidad de Rn (n>=3) con condiciones de frontera de Dirichlet, cuyo término no lineal es de la formalamda.m(|x|)f(u) donde m(|.|) es radialmente simétrica, discontinua y cambia de signo. Este estudio se realiza utilizando técnicas variacionales y en especial el “Lema del Paso de Montaña” de Ambrosetti-Rabinowitz.

    • English

      We study the existence of radial solutions of indefinite semilinear elliptic equations in the unit ball in Rn (n>=3) with Dirichlet boundary conditions, whose nonlinear term has the form lamda.m(|x|)f(u) where m(|.|) is radially symmetric, discontinuous and changes sign. This study is realized using variational tecniques and especially the Ambrosetti-Rabinowitz’s “Mountain Pass Lemma”.

  • Referencias bibliográficas
    • Alama S, Del Pino M. Solutions of elliptic equations with indefinite nonlinearities via Morse theory and linking. Annales de l’I.H.P. Analyse...
    • Alama S, Tarantello G. On semilinear elliptic equations with indefinite nonlinearities. Calculus of Variations and Partial Differential Equations....
    • Alama S, Tarantello G. Elliptic Problems with Nonlinearities Indefinite in Sign. Journal of Functional Analysis. 1996; 141:159-215.
    • Ambrosetti A, Malchiodi A. Nonlinear Analysis and Semilinear Elliptic Problems. Cambridge University Press, 2007.
    • Ambrosetti A, Rabinowitz P. Dual variational methods in critical point theory and applications. Journal of Functional Analysis.1973; 14:349-381.
    • Badiale M, Serra E. Semilinear Elliptic Equations for Beginners: Existence Results via the Variational Approach. Springer, 2011.
    • Barutello V, Secchi S, Serra E. A note on the radial solutions for the supercritical H´enon equation. Journal of Mathematical Analysis and...
    • Berestycki He, Capuzzo-Dolcetta I, Nirenberg L. Superlinear indefinite elliptic problems and nonlinear Liouville theorems. Topological Methods...
    • Berestycki H, Capuzzo-Dolcetta I, Nirenberg L. Variational methods for indefinite superlinear homogeneous elliptic problems. Nonlinear Differential...
    • Brezis H. Functional Analysis, Sobolev Spaces and Partial Differential Equations. Berlin: Springer; 2010.
    • Calahorrano M. Existencia de soluciones positivas para problemas no lineales con discontinuidades indefinidas. Boletín de la Sociedad Matemática...
    • Calahorrano M. El problema del plasma confinado. Multiplicidad de soluciones cuando las no linealidades son indefinidas, Memorias del X Encuentro...
    • Calahorrano M, Dobarro F. Multiple solutions for Inhomogeneous Elliptic Problems Arising in Astrophysics. Mathematical Models and Methods...
    • Calahorrano M, Mena H. Multiple solutions for inhomogeneous nonlinear elliptic problems arising in astrophysics. Electronic Journal of Differential...
    • Calahorrano M, Yangari M. Sistemas de ecuaciones diferenciales nolineales indefinidas. Revista Politécnica. 2010; 29:133-137.
    • Cevallos I. Existencia de Soluciones Radiales para Problemas Semilineales El´ıpticos Indefinidos. Proyecto de titulación, Escuela Politécnica...
    • Evans L. Partial Differential Equations. Rhode Island: American Mathematical Society. Providence; 1997.
    • Gidas B, Ni Wei Ming, Nirenberg L. Symmetry and related properties via the maximum principle. Communications in Mathematical Physics. 1979;...
    • Ni WM. A nonlinear Dirichlet Problem on the Unit Ball and Its Applications. Indiana University Mathematics Journal. 1982; 31:801-807.
    • Papini D, Zanolin F. Periodic Points and Chaotic-like Dynamics of Planar Maps Associated to Nonlinear Hill’s Equations with Indefinite Weigh....
    • Papini D, Zanolin F. Some results on periodic points and chaotic dynamics arising from the study of the nonlinear Hill equations. Rendiconti...
    • Qing-Liu Y, Qin-Sheng M. Existence of positive radial solutions for some semilinear elliptic equations in annulus. Applied Mathematics and...
    • Rabinowitz P. Minimax Methods in Critical Point Theory with Applications to Differential Equations. New York: Conference Board of the Mathematical...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno