Ir al contenido

Documat


Linear equality-constrained least-square problems by generalized QR factorization

  • Cabrera Miranda, Sergio Andrés [1] ; Triana Laverde, Juan Gabriel [2]
    1. [1] Programa de Estadística, Universidad ECCI, Bogotá, Colombia.
    2. [2] Universidad ECCI, Bogotá, Colombia.
  • Localización: Selecciones Matemáticas, ISSN-e 2411-1783, Vol. 8, Nº. 2, 2021 (Ejemplar dedicado a: August - December), págs. 437-443
  • Idioma: inglés
  • DOI: 10.17268/sel.mat.2021.02.20
  • Títulos paralelos:
    • El problema de los mínimos cuadrados con restricciones de igualdad mediante la factorización QR generalizada
  • Enlaces
  • Resumen
    • español

      La factorización QR generalizada, también conocida como factorización GQR, permite descomponer dos matrices A y B simultáneamente a una forma triangular. En este artículo, se muestra cómo aplicar la factorización GQR para resolver problemas de mínimos cuadrados con restricciones de igualdad; además, se emplea esta factorización para resolver problemas de mínimos cuadrados sobre cuaterniones.

    • English

      The generalized QR factorization, also known as GQR factorization, is a method that simultaneously transforms two matrices A and B in a triangular form. In this paper, we show the application of GQR factorization in solving linear equality-constrained least square problems; in addition, we explain how to use GQR factorization for solving quaternion least-square problems through the matrix representation of quaternions.

  • Referencias bibliográficas
    • Anderson E, Bai Z, Dongarra Z. Generalized qr factorization and its applications. Linear Algebra Appl. 1992; 162-164:243-271.
    • Golub G, Van Loan C. Matrix computations. 4th ed. Baltimore: The Johns Hopkins University Press; 2012.
    • Hammarling S. The numerical solution of the general Gauss-Markov linear model. In: Durrani, T. et al. editors. Mathematics in Signal Processing....
    • Jia Z, Wei M, Zhao M, Chen Y. A new real structure-preserving quaternion QR algorithm. J. Comput. Appl. Math. 2018; 343:26-48.
    • Jiang T, Chen L. Algebraic algorithms for least squares problem in quaternionic quantum theory. Comput. Phys. Commun. 2007; 176:481-485.
    • Jiang T, Cheng X, Ling S. An algebraic technique for total least squares problem in quaternionic quantum theory. Appl. Math. Lett. 2016; 52:58-63.
    • Jiang T, Jiang Z, Zhang Z. Two novel algebraic techniques for quaternion least squares problems in quaternionic quantum mechanics. Adv. Appl....
    • Jiang T, Zhao J, Wei M. A new technique of quaternion equality constrained least squares problem. J. Comput. Appl. Math. 2008; 216(2):509-513.
    • Ling S, Xu X, Jiang T. Algebraic Method for Inequality Constrained Quaternion Least Squares Problem. Adv. Appl. Clifford Algebr. 2013; 23(4):919-928.
    • Zeb S, Yousaf M. Updating QR factorization procedure for solution of linear least squares problem with equality constraints. J. Inequal. Appl....
    • Zhang F, Wei M, Li Y, Zhao J. Special least squares solutions of the quaternion matrix equation AX = B with applications. Appl. Math....
    • Zhdanov A, Gogoleva S. Solving least squares problems with equality constraints based on augmented regularized normal equations. Appl. Math....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno