Ir al contenido

Documat


Modelo matemático de la dinámica bidimensional del flujo y concentraciones de gases (O2 y CO2 ) en los sacos alveolares pulmonares

  • ., Luis Caucha [1] ; ., Obidio Rubio [2] ; ., Alexis Rodriguez [2]
    1. [1] Universidad Nacional de Tumbes

      Universidad Nacional de Tumbes

      Provincia de Tumbes, Perú

    2. [2] Universidad Nacional de Trujillo

      Universidad Nacional de Trujillo

      Provincia de Trujillo, Perú

  • Localización: Selecciones Matemáticas, ISSN-e 2411-1783, Vol. 4, Nº. 2, 2017 (Ejemplar dedicado a: August - December), págs. 220-229
  • Idioma: español
  • DOI: 10.17268/sel.mat.2017.02.09
  • Títulos paralelos:
    • Two-dimensional mathematical model of the dynamic for the fluid and gases (CO2 and O2 ) concentrations in the pulmonary alveolar sacs
  • Enlaces
  • Resumen
    • español

      En este artículo simulamos la dinámica del transporte de CO2 en los sacos alveolares pulmonares. Usando el método Euleriano-Lagrangiano arbitrario, se pudo controlar el movimiento del dominio para una respiración normal y forzada. El fluido de gas de ambiente inhalado y las concentraciones de CO2 fueron aproximadas por las ecuaciones de Navier-stokes y la ecuación de convección difusión, el stress paras diferentes maniobras fueron calculadas en tiempos iguales. La expansión para la maniobra normal y forzadas fueron representadas como el 9y 90% de la geometría inicial. Las diferencias de la cantidad de CO2 fue 73x10

    • English

      We simulated the dynamics of CO2 transport in the alveolar sacs of the human lung. Using Arbitrary Lagrangian Eulerian (ALE) framework, we control the movement domain for a normal and fast maneuver. The fluid of room air inspired and CO2 concentrations were approximated by Navier-Stokes and convection diffusion equations; the stress-stretch in the wall for different volumes were quantified in equal time of respiration. The expansion for a normal and forced maneuver were represented as 9 and 90% to the initial geometry. The difference of the CO2 was 73x10

  • Referencias bibliográficas
    • L. J. Caucha, J. C. Cruz, L. A. Rueda, Modeling a co2 expirogram obtained with a forced expiratory maneuver., FASEB J. 24 (2010)1063.5.
    • P. W. Scherer, L. H. Shendalman, N. M. Green, Simultaneous diffusion and convection in single breath lung washout, Bull. Math Biophys. 34...
    • E. R. Weibel, Morphometry of the human lung, Berlin:Springer, 1963.
    • L. Engel, Gas mixing within the acinus of the lung., J. Appl. Physiol. 54 (1983) 609–618.
    • M. Paiva, L. Engel, Model analysis of intra-acinar gas exchange., Respiration Physiology 62 (1985) 257–272.
    • D. A. Scrimshire, P. J. Tomlin, R. A. Ethridge, Computer simulation of gas exchange in human lungs, J. Appl. Physiol. 34(5) (1973)687–696.
    • M. Felici, M. Filoche, B. Sapoval, Diffusional screening in the human pulmonary acinus, J. Appl. Physiol. 94 (2003) 2010–2016.
    • A. J. Swan, M. H. Tawhai, Evidence for minimal oxygen heterogeneity in the healthy human pulmonary acinus, J. Appl. Physiol. 110(2011) 528–537.
    • W. J. Federspiel, J. J. Fredberg, Axial dispersion in respiratory bronchioles and alveolar ducts, J. Appl. Physiol. 64(6) (1988) 2614–2621.
    • J. Donéa, P. Fasoli-Stella, S. Giuliani, Lagrangian and eulerian finite element techniques for transient fluid-structure interaction problems,...
    • T. Hughes,W. Liu, T. Zimmermann, Lagrangian-Eulerian finite element formulation for incompressible viscous flows, Comput. Methods Appl. Mech....
    • X. Flores, J. Cruz, Single-breath, room-air method for measuring closing volume (phase iv) in the normal human lung., Chest 102 (1992)438–443.
    • R. Sikand, P. Cerretelli, L. E. Farhi, Effects of va and va/q distribution and of time on the alveolar plateau, J. Appl. Physiol. 21 (1966)1331–1337.
    • J. Milic-Emili, J. A. M. Henderson, M. B. Dolovich, D. Trop, K. Kaneko, Regional distribution of inspired gas in the lung., J. Appl. Physiol....
    • L. J. Caucha, J. C. Cruz, J. M. Melendrez, Modeling exhaled gases after a tidal breath of air to remark the difference between the inhaled...
    • M. Braack, P. B. Mucha, Directional do-nothing condition for the navier-stokes equations., Journal of Computational Mathematics 35(5)(2014)...
    • R. Becker, Mesh adaptation for dirichlet flow control via nitsche’s method., Commun. Numer. Meth. Engng. 18 (2002) 669–680.
    • G. P. Galdi, R. Rannacher, Fundamental Trends in Fluid Structure Interaction, World Scientific Publishing Co., 2010.
    • R. Dziri, J. P. Zolesio, Eulerian derivative fof non-cylindrical functionals., Shape optimization and optimal design 216 (2001) 87–108.
    • C. Grandmont, Existence for a three-dimensional steady state fluid-structure interaction problem, J. Math. fluid mech. 4 (2002) 76–94.
    • R. Temam, Navier-stokes equation and nonlinear functional analysis., CBMS-NSF Regional Conference Series in Applied Mathematics 66 SIAM, Philadelphia.
    • Q. Du, M. D. Gunzburger, L. S. Hou, J. Lee, Analysis of a linear fluid-structure interaction problem., Discrete and continuous dynamical systems....
    • R. S. Adams, Sobolev Space, Academic Press, New York, 1975.
    • H. Brezis, Funtional Analysis, Sobolev Space and Partial Differential Equations, Springer New York, London, Rutgers University, 2010.
    • P. A. Kvale, J. Davis, R. Schrotter, Effect of gas density and ventilatory pattern on steady-state co uptake by the lung, Respiration Physiology...
    • J. Sznitman, Effect of gas density and ventilatory patter on steady-state co uptake by the lung, Journal of Biomechanics 46 (2013)284–298.
    • R. Becker, M. Braack, D. Meidner, T. Richter, B. Vexler, The finite element toolkit GASCOIGNE 3D, HTTP://WWW.GASCOIGNE.UNIHD.DE.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno