Ir al contenido

Documat


A new conformable fractional derivative and applications

  • Stojiljkovic, Vuk [1]
    1. [1] University of Novi Sad

      University of Novi Sad

      RS.VO.6.3194359, Serbia

  • Localización: Selecciones Matemáticas, ISSN-e 2411-1783, Vol. 9, Nº. 2, 2022 (Ejemplar dedicado a: August - December), págs. 370-380
  • Idioma: inglés
  • DOI: 10.17268/sel.mat.2022.02.12
  • Títulos paralelos:
    • Una nueva derivada fraccionaria conforme y aplicaciones
  • Enlaces
  • Resumen
    • español

      La motivacion de este artículo proviene de otros artículos que tratan las derivadas fraccionarias. Introducimos una nueva definición de derivada fraccionaria que obedece a propiedades clásicas que incluyen la linealidad, la regla del producto, la regla del cociente, la regla de la potencia, la regla de la cadena, elteorema de Rolle, teorema del valor medio y series de Taylor. El uso de esta derivada definida se proporciona en la seccion de ejemplo donde se muestra cómo se puede usar nuestra derivada para resolver ecuaciones diferenciales. La comparacion de nuestra derivada con la derivada definida por Abdejjawad y las conclusiones generales se dan en la seccion de conclusiones.

    • English

      The motivation for this paper comes from other papers treating the fractional derivatives. We introducea new definition of fractional derivative which obeys classical properties including linearity, product rule, quotient rule, power rule, chain rule, Rolle’s theorem, mean value theorem and Taylor series. Usage of thedefined derivative is given in the example section which shows how our derivative can be used in solving differential equations. Comparison of our derivative with the derivative defined by Abdejjawad and overall conclusions are given in the conclusion section.

  • Referencias bibliográficas
    • Abdeljawad T. On Conformable Fractional Calculus. J. of Computational and Applied Mathematics. 2015; 279:57-66.
    • Afzal W, Abbas M, Macías-Díaz JE, Treantã S. Some H-Godunova–Levin Function Inequalities Using Center Radius (Cr) Order Relation. Fractal...
    • Afzal W, Alb Lupac A, Shabbir K. Hermite–Hadamard and Jensen-Type Inequalities for Harmonical (h1, h2)-Godunova–Levin Interval-Valued Functions....
    • Afzal W, Shabbir K, Treantâ S, Nonlaopon K. Jensen and Hermite-Hadamard type inclusions for harmonical h-Godunova-Levin functions. AIMS Math....
    • Caputo M. Linear models of dissipation whose q is almost frequency independent-ii. Geophysical J. of the Royal Astronomical Society. 1967;...
    • Davison M, Essex C. Fractional differential equations and initial value problems. The Mathematical Scientist. 1998; 23(2):108–116.
    • Grunwald AK. Uber begrenzte derivationen und deren anwendung. Zeitschrift fur Mathematik und Physik. 1867; 12:441–480.
    • Guzman PM, Langton G, Lugo-Motta L, Medina J, N'apoles-Valdes JE. A new definition of a fractional derivative of local type. J. Math....
    • Jumarie G. An approach to differential geometry of fractional order via modified Riemann-Liouville derivative. Acta Mathematica Sinica. 2012;...
    • Jumarie G. On the derivative chain-rules in fractional calculus via fractional difference and their application to systems modelling. Central...
    • Jumarie G. On the solution of the stochastic differential equation of exponential growth driven by fractional Brownian motion. App. Math....
    • Khalil R, Al-Horani M, Yousef A, Sababheh M. A new definition of fractional derivative. J. of Comp. and App. Math. 2014; 264:65-70.
    • Kilbas AA, Srivastava HM, Trujillo JJ. Theory and Applications of Fractional Differential Equations. Amsterdam: Elsevier, 2006.
    • Kommum P, Ali A, Shah K, Ali Khan R. Existence results and Hyers-Ulam stability to a class of nonlinear arbitrary order diferential equations....
    • Letnikov AV. Theory of differentiation with an arbitrary index. Sbornik Mathematics(Russian), 1868; 3:1–66.
    • Andrei L. Some differential subordinations using Ruscheweyh derivative and Salagean operator. Advances in Difference Equations, 2013, no 252.
    • Machado JT, Kiryakova V, Mainardi F. Recent history of fractional calculus. Communications in Nonlinear Science and Numerical Simulation....
    • Meerschaert MM, Mortensen J, Wheatcraft SW. Fractional vector calculus for fractional advection-dispersion. Physica A: Statistical Mechanics...
    • Miller KS, Ross B. An Introduction to the Fractional Calculus and Fractional Differential Equations. New York: John Wiley 'I&'...
    • Monje CA, Chen Y, Vinagre BM, Xue D, Feliu V. Fractional-Order Systems and Controls: Fundamentals and applications. London: Springer; 2010.
    • Napoles-Valdes JE, Quevedo MN. The derivative notion revised: The fractional case. The Mathematics Enthusiast. 2019; 16(1): 18.
    • Ortiguera MD, Tenreiro JA. What is a fractional derivative?, J. of Computational Physics. 2015; 293(15):4-13.
    • Parraga P, Vivas-Cortez M, Larreal O. Conformable fractional derivatives and applications to Newtonian dynamic and cooling body law. Selecciones...
    • Riesz M. L’integrale de Riemann-Liouville et le probleme de Cauchy. Acta Mathematica. 1949; 81(1):1–222.
    • Riesz M. L’integrale de Riemann-Liouville et le probleme de Cauchy pour l’equation des ondes. Bulletin de la Societe Mathematique de Francè....
    • Stojiljković V, Ramaswamy R, Ashour Abdelnaby OA, Radenović S. Riemann-Liouville Fractional Inclusions for Convex Functions Using Interval...
    • Stojiljković V, Ramaswamy R, Alshammari F, Ashour OA, Alghazwani MLH, Radenović S. Hermite–Hadamard Type Inequalities Involving (k-p) Fractional...
    • Stojiljković V, Ramaswamy R, Abdelnaby OAA, Radenović S. Some Novel Inequalities for LR-(k,h-m)-p Convex Interval Valued Functions by Means...
    • Weyl H. Bemerkungen zum begriff des differentialquotienten gebrochener ordung vierteljahresschr. Naturforschende Gesellschaft in Zurich. 1917;...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno