Ir al contenido

Documat


A counter example on a Borsuk conjecture

  • Cholaquidis, Alejandro [1]
    1. [1] Universidad de la República

      Universidad de la República

      Uruguay

  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 24, Nº. 1, 2023, págs. 125-128
  • Idioma: inglés
  • DOI: 10.4995/agt.2023.18176
  • Enlaces
  • Resumen
    • The  study  of  shape  restrictions  of  subsets  of Rd has  several  applications in many areas, being convexity, r-convexity, and positive reach, some of the most famous, and typically imposed in set estimation.  The following problem was attributed to K. Borsuk, by J. Perkal in 1956:find an r-convex set which is not locally contractible.  Stated in that way is trivial to find such a set.  However, if we ask the set to be equal to  the  closure  of  its  interior  (a  condition  fulfilled  for  instance  if  the set  is  the  support  of  a  probability  distribution  absolutely  continuous with respect to the d-dimensional Lebesgue measure), the problem is much  more  difficult.   We  present  a  counter  example  of  a  not  locally contractible set, which is r-convex.  This also proves that the class of supports with positive reach of absolutely continuous distributions includes strictly the class ofr-convex supports of absolutely continuous distributions.

  • Referencias bibliográficas
    • A. Cuevas, R. Fraiman and B. Pateiro-López, On statistical properties of sets fulfilling rolling-type conditions, Adv. in Appl. Probab. 44...
    • A. Cuevas and R. Fraiman, Set estimation, in: New Perspectives on Stochastic Geometry, W. S. Kendall and I. Molchanov, eds., Oxford University...
    • H. Federer, Curvature measures, Trans. Amer. Math. Soc. 93 (1959), 418-491. https://doi.org/10.1090/S0002-9947-1959-0110078-1
    • P. Mani-Levitska, Characterizations of convex sets, in: Handbook of Convex Geometry, P. M. Gruber and J. M. Wills, eds., North Holland (1993),...
    • B. Pateiro-López and A. Rodríguez-Casal, Length and surface area estimation under smoothness restrictions, Adv. in Appl. Probab. 40 (2008),...
    • J. Perkal, Sur les ensembles ε-convexes, Colloq. Math. 4 (1956), 1-10. https://doi.org/10.4064/cm-4-1-1-10
    • A. Rodríguez-Casal, Set estimation under convexity-type assumptions, Ann. Inst. H. Poincaré Probab. Statist. 43 (2007), 763-774. https://doi.org/10.1016/j.anihpb.2006.11.001
    • G. Walther, Granulometric smoothing, Ann. Statist. 25 (1997), 2273-2299. https://doi.org/10.1214/aos/1030741072

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno