Ir al contenido

Documat


Digital semicovering and digital quasicovering maps

  • Pakdaman, Ali [1]
    1. [1] Golestan University

      Golestan University

      Irán

  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 24, Nº. 1, 2023, págs. 47-57
  • Idioma: inglés
  • DOI: 10.4995/agt.2023.17156
  • Enlaces
  • Resumen
    • In this paper we introduce notions of digital semicovering and digital quasicovering maps. We show that these are generalizations of digital covering maps and investigate their relations. We will also clarify the relationship between these generalizations and digital path lifting.

  • Referencias bibliográficas
    • L. Boxer, Digitally continuous functions, Pattern Recognition Letters 15 (1994), 833-839. https://doi.org/10.1016/0167-8655(94)90012-4
    • L. Boxer, A classical construction for the digital fundamental group, Journal of Mathematical Imaging and Vision 10 (1999), 51-62. https://doi.org/10.1023/A:1008370600456
    • L. Boxer, Digital products, wedges, and covering spaces, Journal of Mathematical Imaging and Vision 25 (2006), 159-171. https://doi.org/10.1007/s10851-006-9698-5
    • L. Boxer and I. Karaca, The classification of digital covering spaces, Journal of Mathematical Imaging and Vision 32 (2008), 23-29. https://doi.org/10.1007/s10851-008-0088-z
    • L. Boxer and I. Karaca, Some properties of digital covering spaces, Journal of Mathematical Imaging and Vision 37 (2010), 17-26. https://doi.org/10.1007/s10851-010-0189-3
    • S. E. Han, Digital (κ0, κ1)-covering map and its properties, Honam Math. Jour. 26 (2004), 107-117.
    • S. E. Han, Non-product property of the digital fundamental group, Information Sciences 171 (2005), 73-91. https://doi.org/10.1016/j.ins.2004.03.018
    • S. E. Han, Digital coverings and their applications, Journal of Applied Mathematics and Computing 18 (2005), 487-495. https://doi.org/10.1016/j.aml.2004.08.006
    • S. E. Han, Unique pseudolifting property in digital topology, Filomat 26, no. 4 (2012), 739--746. https://doi.org/10.2298/FIL1204739H
    • G. T. Herman, Oriented surfaces in digital spaces, CVGIP: Graphical Models and Image Processing 55 (1993), 381-396. https://doi.org/10.1006/cgip.1993.1029
    • E. Khalimsky, Motion, deformation, and homotopy in finite spaces, Proceedings IEEE International Conference on Systems, Man, and Cybernetics...
    • T. Y. Kong, A digital fundamental group, Computers and Graphics 13 (1989), 159-166. https://doi.org/10.1016/0097-8493(89)90058-7
    • A. Pakdaman, Is there any digital pseudocovering map?, Caspian Journal of Mathematical Sciences 11 (2022), 210-216.
    • A. Pakdaman and M. Zakki, Equivalent conditions for digital covering maps, Filomat 34, no. 12 (2020), 4005-4014. https://doi.org/10.2298/FIL2012005P
    • A. Rosenfeld, Digital topology, American Mathematical Monthly 86 (1979), 76-87. https://doi.org/10.1080/00029890.1979.11994873
    • A. Rosenfeld, Continuous functions on digital pictures, Pattern Recognition Letters 4 (1986), 177-184. https://doi.org/10.1016/0167-8655(86)90017-6
    • H. Spanier, Algebraic Topology, McGraw-Hill Book Co, New York-Toronto, Ont. London, 1966.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno