Ir al contenido

Documat


Fibonacci Wavelet Collocation Method for Fredholm Integral Equations of Second Kind

  • Pooja Yadav [1] ; Shah Jahan [1] ; K. S. Nisar [2]
    1. [1] Central University of Haryana

      Central University of Haryana

      India

    2. [2] Prience Sattam Bin Abdulaziz University
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 22, Nº 2, 2023
  • Idioma: inglés
  • Enlaces
  • Resumen
    • The goal of this research is to provide an effective technique for finding approximate solutions to the Fredholm integral problems of second kind using the Fibonacci Wavelet. To approximate the problem, Fibonacci wavelet collocation technique is employed. The Fredholm integral equations are transformed into algebraic equations having unknown Fibonacci coefficients. The convergence analysis and error estimation of the Fibonacci wavelet is briefly discussed. The results obtained by the current methodology are shown with the help of tables and graphs. To demonstrate the novelty of the current technique the outcomes are compared with Hermite cubic spline. Additionally, the comparison of exact and approximate values shows the precision, adaptability, and resilience of the suggested numerical approach.

  • Referencias bibliográficas
    • 1. Hethcote, H.W., Tudor, D.W.: Integral equation models for endemic infectious diseases. J Math. Biol. 9, 37–47 (1980)
    • 2. Ting, S.C., Hohmann, G.W.: Integral equation modeling of three-dimensional magnetotelluric response. Geophysics 46(2), 182–197 (1981)
    • 3. Pettitt, B.M., Rossky, P.J.: Integral equation predictions of liquid state structure for waterlike intermolecular potentials. J. Chem....
    • 4. Miller, E.K.: An overview of time-domain integral-equation models in electromagnetics. J. Electromagn. Waves Appl. 1(3), 269–293 (1987)
    • 5. Babaaghaie, A., Maleknejad, K.: Numerical solutions of nonlinear two-dimensional partial Volterra integro-differential equations by Haar...
    • 6. Tavassoli Kajani, M., Ghasemi, M., Babolian, E.: Numerical solution of linear integro-differential equation by using sine–cosine wavelets....
    • 7. Bahmanpour, M., Fariborzi Araghi, M.A.: Numerical solution of Fredholm and Volterra integral equations of the first kind using wavelets...
    • 8. Bahmanpour, M., Fariborzi Araghi, M.A.: A method for solving Fredholm integral equation of the first kind based on Chebyshev wavelets....
    • 9. Tavassoli Kajani, M., Ghasemi, M., Babolian, E.: Comparison between the homotopy perturbation method and the sine–cosine wavelet method...
    • 10. Chen, Y.M., Wei, Y.Q., Liub, D.Y., Yua, H.: Numerical solution for a class of nonlinear variable order fractional differential equations...
    • 11. Tavassoli Kajani, M., Hadi Vencheh, A.: Solving linear integro-differential equation with Legendre wavelets. Int. J. Comput. Math. 81(6),...
    • 12. Friborzi Araghi, M.A., Bahmanpour, M.: Numerical solution of Fredholm integral equation of the first kind using Legendre, Chebyshev and...
    • 13. Ghasemi, M., Tavassoli Kajani, M.: Numerical solution of time-varying delay systems by Chebyshev wavelets. Appl. Math. Model. 35(11),...
    • 14. Karimi, M., Rezaee, A.: Regularization of the Cauchy problem for the Helmholtz equation by using Meyer wavelet. J. Comput. Appl. Math....
    • 15. Pandit, S., Jiwari, R., Bedi, K., Koksal, M.E.: Haar wavelets operational matrix based algorithm for computational modelling of hyperbolic...
    • 16. Jiwari, R.: A Haar wavelet quasilinearization approach for numerical simulation of Burgers’ equation. Comput. Phys. Commun. 183(11), 2413–2423...
    • 17. Pandit, S.: Local radial basis functions and scale-3 Haar wavelets operational matrices based numerical algorithms for generalized regularized...
    • 18. Pandit, S., Mittal, R.C.: A numerical algorithm based on scale-3 Haar wavelets for fractional advection dispersion equation. Eng. Comput....
    • 19. Rostami, Y.: A new wavelet method for solving a class of nonlinear partial integro-differential equations with weakly singular kernels....
    • 20. Rostami, Y.: An effective computational approach based on Hermite wavelet Galerkin for solving parabolic Volterra partial integro differential...
    • 21. Rostami, Y.: Two approximated techniques for solving of system of two-dimensional partial integral differential equations with weakly...
    • 22. Liang, X., Liu, M., Che, X.: Solving second kind integral equations by Galerkin methods with continuous orthogonal wavelets. J. Comput....
    • 23. Maleknejad, K., Mahmoudi, Y.: Numerical solution of linear Fredholm integral equation by using hybrid Taylor and block-pulse functions....
    • 24. Babolian, E., Marzban, H.R., Salmani, M.: Using triangular orthogonal functions for solving Fredholm integral equations of the second...
    • 25. Maleknejad, K., Tavassoli Kajani, M., Mahmoudi, Y.: Numerical solution of linear Fredholm and Volterra integral equation of the second...
    • 26. Maleknejad, K., Yousefi, M.: Numerical solution of the integral equation of the second kind by using wavelet bases of Hermite cubic splines....
    • 27. Lepik, Ü., Tamme, E.: Application of the Haar wavelets for solution of linear integral equations. In: Antalya, Turkey—Dynamical Systems...
    • 28. Yousefi, S., Banifatemi, A.: Numerical solution of Fredholm integral equations by using CAS wavelets. Appl. Math. Comput. 183, 458–463...
    • 29. Maleknejad, K., Mirzaee, F.: Using rationalized Haar wavelet for solving linear integral equations. Appl. Math. Comput. 160, 579–587 (2005)
    • 30. Maleknejad, K., Lotfi, T., Rostami, Y.: Numerical computational method in solving Fredholm integral equations of the second kind by using...
    • 31. Muthuvalu, M.S., Sulaiman, J.: Half-Sweep Arithmetic Mean method with composite trapezoidal scheme for solving linear Fredholm integral...
    • 32. Keshavarz, E., Ordokhani, Y., Razzaghi, M.: Bernoulli wavelet operational matrix of fractional order integration and its applications...
    • 33. Rostami, Y., Maleknejad, K.: The solution of the nonlinear mixed partial integro-differential equation via two-dimensional hybrid functions....
    • 34. Rostami, Y., Maleknejad, K.: Comparison of two hybrid functions for numerical solution of nonlinear mixed partial integro-differential...
    • 35. Rostami, Y.: An effective computational approach based on Hermite wavelet Galerkin for solving parabolic Volterra partial integro differential...
    • 36. Sabermahani, Sedigheh: Fibonacci wavelets and their applications for solving two classes of timevarying delay problems. Optimal Control...
    • 37. Falcon, S., Plaza, A.: On k-Fibonacci sequences and polynomials and their derivatives. Chaos Solitons Fractals 39, 1005–19 (2009)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno