Ir al contenido

Documat


Uncountable Family of 0-Rigid Continua that are Homeomorphic to Their Inverse Limits

  • Matevž Crepnjak [1] ; Teja Kac [1]
    1. [1] University of Maribor

      University of Maribor

      Eslovenia

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 22, Nº 2, 2023
  • Idioma: inglés
  • Enlaces
  • Resumen
    • It is a well-known fact that there are continua X such that the inverse limit of any inverse sequence {X, fn} with surjective continuous bonding functions fn is homeomorphic to X. The pseudoarc or any Cook continuum are examples of such continua. Recently, a large family of continua X was constructed in such a way that X is 1 m -rigid and the inverse limit of any inverse sequence {X, fn} with surjective continuous bonding functions fn is homeomorphic to X by Baniˇc and Kac. In this paper, we construct an uncountable family of pairwise non-homeomorphic continua X such that X is 0-rigid and prove that for any sequence ( fn) of continuous surjections on X, the inverse limit lim ←−{X, fn} is homeomorphic to X.

  • Referencias bibliográficas
    • 1. Ancel, F.D., Singh, S.: Rigid finite dimensional compacta whose squares are manifolds. Proc. Am. Math. Soc. 887, 342–346 (1983)
    • 2. Baniˇc, I., Kac, T.: Mapping theorems for rigid continua and their inverse limits. Qual. Theory Dyn. Syst. 21, 117–146 (2022)
    • 3. Cook, H.: Continua which admit only the identity mapping onto non-degenerate subcontinua. Fund. Math. 60, 241–249 (1967)
    • 4. Hernandez-Gutierrez, R., Martinez-de-la-Vega, V.: Rigidity of symmetric products. Topol. Appl. 160, 1577–1587 (2013)
    • 5. Hernandez-Gutierez, R., Illanes, A., Martinez-de-la-Vega, V.: Rigidity of Hiperspaces. Rocky Mountain J. Math. 45, 213–236 (2015)
    • 6. Kennedy, J.: Infinite product of Cook continua. Topol. Proc. 14, 89–111 (1989)
    • 7. Kennedy, J.: Positive entropy homeomorphisms on the pseudoarc. Mich. Math. J. 36, 181–191 (1989)
    • 8. Ma´ckowiak, T.: Singular arc-like continua. Diss. Math. 257, 1–40 (1986)
    • 9. Nadler, S.B.: Continuum theory. An introduction, Marcel Dekker Inc, New York (1992)
    • 10. Snoha, L., Ye, X., Zhang, R.: Topology and topological sequence entropy. Sci. China Math. 63, 205–296 (2020)
    • 11. Terasawa, J.: Rigid continua with many embeddings. Canad. Math. Bull. 35, 557–559 (1992)
    • 12. van Mill, J.: A rigid space X for which X × X is homogeneous; an application of infinite-dimensional topology. Proc. Am. Math. Soc. 83,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno