Ir al contenido

Documat


Optimal recovery of potentials for Sturm-Liouville eigenvalue problems with separated boundary conditions

  • Yifei Jia [1] ; Jiangang Qi [1] ; Jing Li [1]
    1. [1] Shandong University

      Shandong University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 22, Nº 2, 2023
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, we consider the optimal recovery of potentials for a Sturm-Liouville problem −y + qy = λy, y(0) = 0 = y(1) − hy (1), 0 < h < 1, q ∈ L1[0, 1] with only one given eigenvalue. Denote by λn(q) the n−th eigenvalue of this problem.

      For λ ∈ R, denote by n(λ) = q : q ∈ L1[0, 1], λn(q) = λ}, n ≥ 1 and En(λ) = inf {q : q ∈ n(λ)}. The optimal recovery of potential function in this paper refers to finding the infimum of the L1-norm for potential function in the set n(λ). We will obtain a formula for En(λ) and specify where the infimum can be attained. Our results are closely related to the discontinuity of the eigenvalues with respect to the boundary conditions. Since the optimal recovery problem with only one fixed eigenvalue is just the duality problem to the extremum problem of eigenvalues, we also give the extremum of the n-th eigenvalue of a problem for potentials on a sphere in L1[0, 1].

  • Referencias bibliográficas
    • 1. Poschel, J., Trubowitz, E.: Inverse Spectral Theory. Academic Press, New York (1987)
    • 2. Ezhak, S.S., Telnova, M.Yu.: Estimates for the first eigenvalue of the Sturm-Liouville problem with potentials in weighted spaces. J. Math....
    • 3. Il’yasov, Y.S., Valeev, N.F.: On inverse spectral problem and generalized Sturm nodal theorem for nonlinear boundary value problems. Ufa...
    • 4. Valeev, N.F., Il’yasov, Y.S.: On an inverse optimization spectral problem and a corresponding nonlinear boundary value problem. Mat. Zametki....
    • 5. Zhang, M., Wen, Z., Meng, G., Qi, J., Xie, B.: On the number and complete continuity of weighted eigenvalues of measure differential equations....
    • 6. Borg, G.: Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe. Acta Math. 78, 1–96 (1946)
    • 7. Levinson, N.: The inverse Sturm-Liouville problems. Mat. Tidsskr. B, 25–30 (1949)
    • 8. Gelfand, I.M., Levitan, B.M.: On the determination of a differentiale equation from its spectral function. Izv. Akad. Nauk. SSSR. Ser....
    • 9. Matchenko, V.A.: Some problems in the theory of second-order differential operators. Dokl. Akad. Nauk. SSSR. 72, 457–460 (1950)
    • 10. Ozkan, A.S., Adalar, ˙I: Half-inverse Sturm-Liouville problem on a time scale. Inverse Probl. 36, 1–8 (2020)
    • 11. Gesztesy, F., Simon, B.: Inverse spectral analysis with partial information on the potential. II. The case of discrete spectrum. Trans....
    • 12. Gesztesy, F., Simon, B.: Inverse spectral analysis with partial information on the potential. I, The case of an a.c. component in the...
    • 13. Wei, G., Xu, H.K.: Inverse spectral problem for a string equation with partial information. Inverse Probl. 26, 1–15 (2010)
    • 14. Wei, G., Xu, H.K.: Inverse spectral problem with partial information given on the potential and norming constants. Trans. Am. Math. Soc....
    • 15. Il’yasov, Y.S., Valeev, N.F.: On nonlinear boundary value problem corresponding to N-dimensional inverse spectral problem. J. Differ....
    • 16. Guo, H., Qi, J.: Extremal norm for potentials of Sturm-Liouville eigenvalue problems with separated boundary conditions. Electron. J....
    • 17. Qi, J., Chen, S.: Extremal norms of the potentials recovered from inverse Dirichlet problems. Inverse Probl. 32, 1–13 (2016)
    • 18. Egorov, Yu.V., Kondratev, V.A.: On estimates for the first eigenvalue in certain Sturm-Liouville problems. Uspekhi Mat. Nauk. 51(3), 73–144...
    • 19. Krein, M.G.: On certain problems on the maximum and minimum of characteristic values and on Lyapunov zones of stability. Am. Math. Soc....
    • 20. Ezhak, S.S.: On estimates for the minimum eigenvalue of the Sturm-Liouville problem with an integrable condition (Russian). Sovrem. Mat....
    • 21. Karulina, E.S.: On estimates of the first eigenvalue for the Sturm-Liouville problem with symmetric boundary conditions and integral condition....
    • 22. Karulina, E.S.: Some estimates for the minimal eigenvalue of the Sturm-Liouville problem with thirdtype boundary conditions. Math. Bohem....
    • 23. Wei, Q., Meng, G., Zhang, M.: Extremal values of eigenvalues of Sturm-Liouville operators with potentials in L1 balls. J. Differ. Equ....
    • 24. Zhang, M.: Extremal values of smallest eigenvalues of Hill’s operators with potentials in L1 balls. J. Differ. Equ. 246(11), 4188–4220...
    • 25. Qi, J., Xie, B.: Extremum estimates of the L1-norm of weights for eigenvalue problems of vibrating string equations based on critical...
    • 26. Zettl, A.: Sturm-Liouville Theory. Math. Surveys Monogr. Amer. Math. Soc. Providence, RI, 121 (2005)
    • 27. Reed, M., Simon, B.: Methods of Mordern Mathematical Physics. Elsevier(Singapore) Pte Ltd., Academic Press, New York (1972)
    • 28. Everitt, W.N., Möller, M., Zettl, A.: Discontinuous dependence of the n-th Sturm-Liouville eigenvalue1997(123), 145–150

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno