Ir al contenido

Documat


Study on a Second-Order Ordinary Differential Equation for the Ocean Flow in Arctic Gyres

  • Fei Chen [1] ; Michal Feckan [2] ; JinRong Wang [1]
    1. [1] Guizhou University

      Guizhou University

      China

    2. [2] Comenius University

      Comenius University

      Eslovaquia

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 22, Nº 2, 2023
  • Idioma: inglés
  • Enlaces
  • Resumen
    • By considering the radial solutions for a semi-linear elliptic equation model of gyres and introducing exponential transformation, we derive a second-order ordinary differential equation, which acts as a new model for the ocean flow in arctic gyres. Then we investigate the solutions for constant vorticity, linear vorticity and nonlinear vorticity in this model.

  • Referencias bibliográficas
    • 1. Apel, J.: Principles of Ocean Physics. Academic Press, London (1987)
    • 2. Chu, J.: On a differential equation arising in geophysics. Monatsh. Math. 187, 499–508 (2018)
    • 3. Chu, J.: On a nonlinear model for arctic gyres. Ann. Mat. Pura. Appl. 197, 651–659 (2018)
    • 4. Chu, J.: On a nonlinear integral equation for the ocean flow in arctic gyres. Q. Appl. Math. 76, 489–498 (2018)
    • 5. Chu, J.: Monotone solutions of a nonlinear differential equation for geophysical fluid flows. Nonlinear Anal. 166, 144–153 (2018)
    • 6. Constantin, A., Ivanov, R.I.: Equatorial wave-current interactions. Conmmun. Math. Phys. 370, 1–48 (2019)
    • 7. Constantin, A., Johnson, R.S.: An exact, steady, purely azimuthal flow as a model for the Antarctic Circumpolar Current. J. Phys. Oceanogr....
    • 8. Constantin, A., Johnson, R.S.: Large gyres as a shallow-water asymptotic solution of Euler’s equation in spherical coordinates. Proc. R....
    • 9. Constantin, A., Johnson, R.S.: An exact, steady, purely azimuthal equatorial flow with a free surface. J. Phys. Oceanogr. 46, 1935–1945...
    • 10. Constantin, A., Johnson, R.S.: Ekman-type solutions for shallow-water flows on a rotating sphere: a new perspective on a classical problem....
    • 11. Constantin, A., Johnson, R.S.: The dynamics of waves interacting with the Equatorial Undercurrent. Geophys. Astrophys. Fluid Dyn. 109,...
    • 12. Coppel, W.A.: Stability and Asymptotic Behavior of Differential Equations. D. C. Heath and Company, Boston, Mass (1965)
    • 13. Daners, D.: The Mercator and stereographic projections, and many in between. Am. Math. Mon. 119, 199–210 (2012)
    • 14. Haziot, S.V.: Study of an elliptic partial differential equation modeling the ocean flow in Arctic gyres. J. Math. Fluid Mech. 23, 1–9...
    • 15. Haziot, S.V.: Explicit two-dimensional solutions for the ocean flow in Arctic gyres. Monatsh. Math. 189, 429–440 (2019)
    • 16. Henry, D., Martin, C.I.: Free-surface, purely azimuthal equatorial flows in spherical coordinates with stratification. J. Differ. Equ....
    • 17. Li, Q., Feˇckan,M.,Wang, J.:Monotonicity of horizontal fluid velocity and pressure gradient distribution beneath equatorial Stokes waves....
    • 18. Marynets, K.: A weighted Sturm-Liouville problem related to ocean flows. J. Math. Fluid Mech. 20, 929–935 (2018)
    • 19. Marynets, K.: A nonlinear two-point boundary-value problem in geophysics. Monatsh. Math. 188, 287–295 (2019)
    • 20. Miao, F., Feˇckan, M., Wang, J.: Constant vorticity water flows in the modified equatorial β-plane approximation. Monatsh. Math. 197,...
    • 21. Miao, F., Feˇckan, M., Wang, J.: Stratified equatorial flows in the β-plane approximation with a free surface. Monatsh. Math. 200, 315–334...
    • 22. Vallis, G.K.: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, Cambridge (2017)
    • 23. Viudez, A., Dritschel, D.G.: Vertical velocity in mesoscale geophysical flows. J. Fluid Mech. 483, 199–223 (2003)
    • 24. Zhang, W., Feˇckan, M., Wang, J.: Positive solutions to integral boundary value problems from geophysical fluid flows. Monatsh. Math....
    • 25. Zhang, W., Wang, J., Feˇckan, M.: Existence and uniqueness results for a second order differential equation for the ocean flow in arctic...
    • 26. Wang, J., Feˇckan, M., Zhang, W.: On the nonlocal boundary value problem of geophysical fluid flows. Z. Angew. Math. Phys. 72, 419–434...
    • 27. Wang, J., Feˇckan, M., Wen, Q., O’Regan, D.: Existence and uniqueness results for modeling jet flow of the Antarctic circumpolar current....
    • 28. Wang, J., Zhang, W., Feˇckan, M.: Periodic boundary value problem for second-order differential equations from geophysical fluid flows....
    • 29. Rugh, R.C.: Linear System Theory. Prentice Hall, Upper Saddle River (1996)
    • 30. Rus, I.A.: Ulam stability of ordinary differential equations. Stud. U. Babes-bol. Mat. 54, 125–133 (2009)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno