Ir al contenido

Documat


A kind of characterization of homeomorphism and homeomorphic spaces by Core fundamental groupoid: a good invariant

  • Badiger, Chidanand ; Venkatesh, T. [1]
    1. [1] Rani Channamma University.
  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 42, Nº. 2, 2023, págs. 273-302
  • Idioma: inglés
  • DOI: 10.22199/issn.0717-6279-4533
  • Enlaces
  • Resumen
    • In this paper, we give new topological invariants and a complete characterization to homeomorphisms. The finding a sufficient condition for homeomorphism and classifying topological spaces up to homeomorphism is the open problemin topology [1, 9, 14]. In this article, the main results are Propositions 3.24, 4.40 and 4.41, and Propositions 4.40 is about complete characterization of homeomorphisms i.e. "f : M -->N is a homeomorphism if and only if f# : pi1M --> pi1N is a groupoid iso-homeomorphism". this is the answer to the open problem [1, 9, 14] mentioned. First, we characterize the homeomorphisms completely. In addition, we resolve the open issue [1, 9, 14] of finding sufficient conditions for two topological spaces to be homeomorphic by giving an invariant. The entire result will be obtained by constructing a new notion, that is an extension of fundamental groups; which is already a topological invariant but not a sufficient one. We extend new theory by defining an algebraic sense of fundamental groupoid by establishing such algebraic structure and a unique topology on it. This fundamental groupoid is different from the fundamental groupoid in [16] and also these two different groupoids (one is algebraic sense and another is category theoretic) are not equivalent. We have an explicit description for algebraic structure groupoid and a unique topological structure on fundamental groupoid. And also we will discuss their topological properties also possibility of smooth structures.

  • Referencias bibliográficas
    • A. R. Shastri, Basic algebraic topology. CRC Press, 2013.
    • A. Paques, T. Tamusiunas, “The Galois correspondence theorem for groupoid actions”, Journal of Algebra, vol. 509, pp. 105-123, 2018. https://doi.org/10.1016/j.jalgebra.2018.04.034
    • A. Hatcher, Algebraic topology. Cambridge University Press, 2002.
    • A. Paques and T. Tamusiunas, “A Galois-Grothendieck-type correspondence for groupoid actions”, Algebra and Discrete Mathematics, vol. 17,...
    • A. Ramsay, “Virtual groups and group actions”, Advances in Mathematics, vol. 6, pp. 253-322, 1971. https://doi.org/10.1016/0001-8708(71)90018-1
    • D. K. Biss, “The topological fundamental group and generalized covering spaces”, Topology and its Applications, vol. 124, no. 3, pp. 355-371,...
    • C. Badiger and T. Venkatesh, “Core fundamental groupoid and covering projections”, Journal of Ramanujan Mathematical Society, vol. 36, no....
    • C. Badiger and T. Venkatesh, “A regular Lie group action yields smooth sections of the tangent bundle and relatedness of vector fields, diffeomorphisms”,...
    • C. Ehresmann, Oeuvres complètes Parties 1.1 et 1.2, Topologie algébrique et géométrie différentielle. 1950.
    • D. H. Lenz, “On an ordered based of a topological groupoid from an inverse semigroup”, Proceedings of Edinburgh Mathematical Society, vol....
    • D. Mitrea, I. Mitrea, M. Mitrea, S. Monniaux, Groupoid metrization theory. Springer Science and Business Media, 2012.
    • J. A. Dugundji, “A topologized fundamental group”, Proceedings of the National Academy of Sciences, vol. 36, pp. 141-143, 1950. https://doi.org/10.1073/pnas.36.2.141
    • G. Ivan, “Algebraic constructions of Brandt groupoids”, Proceedings of the Algebra Symposium Babes-Bolyai University, pp. 69-90, 2002. [On...
    • G. Perelman, “Ricci flow with surgery on three manifolds”, 2003. arXiv: math/0303109v1
    • H. Brandt, “Uber eine Verallgemeinerung des Gruppenbegriffes”, Mathematische Annalen, vol. 96, pp. 360-366, 1927. https://doi.org/10.1007/bf01209171
    • P.R Heath, An introduction to homotopy theory via groupoids and universal constructions. Queen’s University, 1978.
    • H. Tietze, “On the topological invariants of multidimensional manifolds”, Monatshefte fur Mathematik und Physik, vol. 19, pp. 1-118, 1908.
    • J. M. Lee, Introduction to smooth manifolds. Springer, 2003.
    • J. R. Munkres, Topology. 2nd ed. Prentice Hall India Learn, 2002.
    • J. Brazas, “The topological fundamental group and free topological groups”, Topology and its Applications, vol. 15, pp. 779-802, 2011. https://doi.org/10.1016/j.topol.2011.01.022
    • J. Avila, Victor Marin and Hector Pinedo, “Isomorphism theorems for groupoids and some applications”, International Journal of Mathematics...
    • J. M. Lee, Introduction to topological manifolds. Springer, 2000.
    • L. W. Tu, An introduction to manifolds. Springer, 2008.
    • M. R. Adhikari, Basic algebraic topology and its applications. Springer, 2016.
    • M. Ivan, “Bundles of topological groupoids”, Universitatea Din Bacau Studii Si Cercetari Stiintifice Seria: Matematica, vol. 15, pp. 43-54,...
    • O. G. Harrold, “A characterization of locally Euclidean spaces”, Transactions American Mathematical Society, vol. 118, pp. 1-16, 1965. https://doi.org/10.1090/s0002-9947-1965-0205240-6
    • P. Scott and H. Short, “The homeomorphism problem for closed 3-manifolds”, Algebraic & Geometric Topology, vol. 14, pp. 2431-2444, 2014....
    • R. Hamilton, “The Ricci flow on surfaces,” in Mathematics and general relativity , vol. 71, J. A. Isenberg, Ed. Providence, RI: AMS, 1988,...
    • S. Hoskova-Mayerova, “Topological hypergroupoids”, Computers and Mathematics with Applications, vol. 64, pp. 2845-2849, 2012. https://doi.org/10.1016/j.camwa.2012.04.017
    • R. Brown, “From groups to groupoids: A brief survey”, Bulletin of the London Mathematical Society, vol. 19, pp. 113-134, 1987. https://doi.org/10.1112/blms/19.2.113
    • R. Brown, Topology and groupoids, 2006.
    • R. Brown and G. Danesh-Naruie, “The fundamental groupoid as a topological groupoid”, Proceedings of the Edinburgh Mathematical Society, vol....
    • R. Brown and J. P. L. Hardy, “Topological groupoid: I Universal constructions”, Mathematische Nachrichten, vol. 71, pp. 273-286, 1976. https://doi.org/10.1002/mana.19760710123
    • Z. Sela, “The isomorphism problem for hyperbolic groups, I”, The Annals of Mathematics, vol. 141, pp. 217-283, 1995. https://doi.org/10.2307/2118520

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno