Ir al contenido

Documat


Duality theory for generalized summing linear operators

  • Botelho, Geraldo [1] ; Campos, Jamilson R. [2]
    1. [1] Universidade Federal de Uberlândia

      Universidade Federal de Uberlândia

      Brasil

    2. [2] Universidade Federal da Paraíba

      Universidade Federal da Paraíba

      Brasil

  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 74, Fasc. 2, 2023, págs. 457-472
  • Idioma: inglés
  • DOI: 10.1007/s13348-022-00359-4
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Generalizing classical results of the theory of absolutely summing operators, in this paper we characterize the duals of a quite large class of Banach operator ideals defined or characterized by the transformation of vector-valued sequences.

  • Referencias bibliográficas
    • Albuquerque, N., Bayart, F., Pellegrino, D., Seoane-Sepúlveda, J.B.: Sharp generalizations of the multilinear Bohnenblust–Hille inequality....
    • Albuquerque, N., Bayart, F., Pellegrino, D., Seoane-Sepúlveda, J.B.: Optimal Hardy-Littlewood type inequalities for polynomials and multilinear...
    • Angulo-López, J.C., Fernández-Unzueta, M.: Lipschitz p-summing multilinear operators. J. Funct. Anal. 279(4), 108572 (2020)
    • Apiola, H.: Duality between spaces of p-summable sequences, (p, q)-summing operators and characterizations of nuclearity. Math. Ann. 219,...
    • Bayart, F.: Multiple summing maps: coordinatewise summability, inclusion theorems and p-Sidon sets. J. Funct. Anal. 274(4), 1129–1154 (2018)
    • Bayart, F., Pellegrino, D., Rueda, P.: On coincidence results for summing multilinear operators: interpolation, \ell _1-spaces and cotype...
    • Blasco, O., Botelho, G., Pellegrino, D., Rueda, P.: Summability of multilinear mappings: littlewood, Orlicz and beyond. Monatsh. Math. 163,...
    • Blasco, O., Fourie, J., Schoeman, I.: On operator valued sequences of multipliers and R-boundedness. J. Math. Anal. Appl. 328, 7–23 (2007)
    • Botelho, G., Campos, J.R.: On the transformation of vector-valued sequences by multilinear operators. Monatsh. Math. 183, 415–435 (2017)
    • Botelho, G., Campos, J.R., Santos, J.: Operator ideals related to absolutely summing and Cohen strongly summing operators. Pac. J. Math. 287(1),...
    • Botelho, G., Freitas, D.: Summing multilinear operators by blocks: the isotropic and anisotropic cases. J. Math. Anal. Appl. 490(1), 124203...
    • Bu, Q., Emmanuele, G.: The projetive and injetive tensor products of L^p[0,1] and X being Grothendieck spaces. Rocky Mt. J. Math. 35(3), 713–726...
    • Campos, J.R., Santos, J.: An anisotropic approach to mid summable sequences. Colloq. Math. 161(1), 35–49 (2020)
    • Cohen, J.S.: Absolutely p-summing, p-nuclear operators and their conjugates. Math. Ann. 201, 177–200 (1973)
    • Defant, A., Floret, K.: Tensor Norms and Operator Ideals, North-Holland, (1993)
    • Diestel, J., Jarchow, H., Tonge, A.: Absolutely Summing Operators, Cambridge University Press, (1995)
    • Grothendieck, A.: Sur certaines classes de suites dans les espaces de Banach et le théorème de Dvoretzky-Rogers. Boletim da Sociedade Matemática...
    • Ribeiro, J., Santos, F.: Generalized multiple summing multilinear operators on Banach spaces. Mediterr. J. Math. 16, 108 (2019)
    • Ribeiro, J., Santos, F.: Absolutely summing polynomials. Methods Funct. Anal. Topol. 27, 74–87 (2021)
    • Serrano-Rodríguez, D.M.: Absolutely \gamma-summing multilinear operators. Linear Algebra Appl. 439, 4110–4118 (2013)
    • Pietsch, A.: Operator Ideals, North-Holland, (1980)
    • Popa, D.: Characterizations of new Cohen summing bilinear operators. Quaest. Math. 41(5), 683–692 (2018)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno