Ir al contenido

Documat


A characterization of the algebraic degree in semidefinite programming

  • Hiep, Dang Tuan [2] ; Giao, Nguyen Thi Ngoc [3] ; Van, Nguyen Thi Mai [1]
    1. [1] Quy Nhon University

      Quy Nhon University

      Vietnam

    2. [2] Faculty of Mathematics and Computer Science, Da Lat University, 1 Phu Dong Thien Vuong, Da Lat, Lam Dong, Vietnam
    3. [3] Faculty of Advanced Science and Technology, University of Science and Technology - The University of Da Nang, 54 Nguyen Luong Bang, Da Nang, Vietnam
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 74, Fasc. 2, 2023, págs. 443-455
  • Idioma: inglés
  • DOI: 10.1007/s13348-022-00358-5
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • In this article, we show that the algebraic degree in semidefinite programming can be expressed in terms of the coefficient of a certain monomial in a doubly symmetric polynomial. This characterization of the algebraic degree allows us to use the theory of symmetric polynomials to obtain many interesting results of Nie, Ranestad and Sturmfels in a simpler way.

  • Referencias bibliográficas
    • Cox, D.A., Katz, S.: Mirror Symmetry and Algebraic Geometry. American Mathematical Society, Providence (1999)
    • Egge, E.S.: An Introduction to Symmetric Functions and Their Combinatorics. American Mathematical Society, Providence (2019)
    • Graf von Bothmer, H.-C., Ranestad, K.: A general formula for the algebraic degree in semidefinite programming. Bull. Lond. Math. Soc. 41,...
    • Grünberg, D.B., Moree, P.: Sequences of enumerative geometry: congruences and asymptotics, with an appendix by Don Zagier. Exp. Math. 17,...
    • Hiep, D.T.: A formula for the algebraic degree in semidefinite programming. Kodai Math. J. 39, 484–488 (2016)
    • Hiep, D.T.: Identities involving (doubly) symmetric polynomials and integrals over Grassmannians. Fund. Math. 246, 181–191 (2019)
    • Hiep, D.T., Tu, N.C.: An identity involving symmetric polynomials and the geometry of Lagrangian Grassmannians. J. Algebra 565, 564–581 (2021)
    • Laksov, D., Lascoux, A., Thorup, A.: On Giambelli’s theorem on complete correlations. Acta Math. 162, 143–199 (1989)
    • Macdonald, I.G.: Symmetric Functions and Hall Polynomials. Oxford University Press, Oxford (1998)
    • Manivel, L.: Symmetric Functions, Schubert Polynomials and Degeneracy Loci, vol. 3. American Mathematical Soc, Providence (2001)
    • Manivel, L., Michalek, M., Monin, L., Seynnaeve, T., Vodicka, M.: Complete quadrics: Schubert calculus for Gaussian models and semidefinite...
    • Nie, J., Ranestad, K., Sturmfels, B.: The algebraic degree of semidefinite programming. Math. Program. Ser. A 122, 379–405 (2010)
    • Zeilberger, D.: A combinatorial proof of Dyson’s conjecture. Discrete Math. 41, 317–321 (1982)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno