Ir al contenido

Documat


Hilbert series of symplectic quotients by the 2-torus

  • Herbig, Hans-Christian [1] ; Herden, Daniel [2] ; Seaton, Christopher [3]
    1. [1] Universidade Federal do Rio de Janeiro

      Universidade Federal do Rio de Janeiro

      Brasil

    2. [2] Baylor University

      Baylor University

      Estados Unidos

    3. [3] Rhodes College

      Rhodes College

      Estados Unidos

  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 74, Fasc. 2, 2023, págs. 415-442
  • Idioma: inglés
  • DOI: 10.1007/s13348-022-00357-6
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We compute the Hilbert series of the graded algebra of real regular functions on a linear symplectic quotient by the 2-torus as well as the first four coefficients of the Laurent expansion of this Hilbert series at t = 1. We describe an algorithm to compute the Hilbert series as well as the Laurent coefficients in explicit examples.

  • Referencias bibliográficas
    • Avramov, L.L., Buchweitz, R.O., Sally, J.D.: Laurent coefficients and Ext of finite graded modules. Math. Ann. 307(3), 401–415 (1997)
    • Bedratyuk, L.: The Poincare series for the algebra of covariants of a binary form. Int. J. Algebra 4(25), 1201–1207 (2010)
    • Bedratyuk, L.: Bivariate Poincaré series for the algebra of covariants of a binary form. ISRN Algebra pp. Art. ID 312789, 11 (2011)
    • Bedratyuk, L.: The MAPLE package for \operatorname{SL}_2-invariants and kernel of Weitzenböck derivations (2011). arXiv:1101.0622 [math.AG]
    • Bedratyuk, L., Ilash, N.: The degree of the algebra of covariants of a binary form. J. Commut. Algebra 7(4), 459–472 (2015)
    • Brion, M.: Invariants de plusieurs formes binaires. Bull. Soc. Math. France 110(4), 429–445 (1982)
    • Bruns, W., Ichim, B., Römer, T., Sieg, R., Söger, C.: Normaliz. Algorithms for rational cones and affine monoids. Available at https://www.normaliz.uni-osnabrueck.de
    • Cowie, L.E., Herbig, H.C., Herden, D., Seaton, C.: The Hilbert series and a-invariant of circle invariants. J. Pure Appl. Algebra 223, 395–421...
    • de Carvalho Cayres Pinto, P., Herbig, H.C., Herden, D., Seaton, C.: The Hilbert series of class SL_2-invariants. Commun. Contemp. Math. 22(7),...
    • Derksen, H., Kemper, G.: Computational Invariant Theory, Invariant Theory and Algebraic Transformation Groups VIII. Encyclopaedia of Mathematical...
    • Farsi, C., Herbig, H.C., Seaton, C.: On orbifold criteria for symplectic toric quotients. SIGMA Symmetry Integrability Geom. Methods Appl....
    • Gessel, I.M.: Generating functions and generalized Dedekind sums. Electron. J. Combin. 4, Paper #R11, 17 pp. (1997). http://www.combinatorics.org/Volume_4/Abstracts/v4i2r11.html....
    • Grayson, D.R., Stillman, M.E.: Macaulay2, a software system for research in algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2/...
    • Herbig, H.C., Herden, D., Seaton, C.: Hilbert series associated to symplectic quotients by \operatorname{SU}_2. Internat. J. Algebra Comput....
    • Herbig, H.C., Herden, D., Seaton, C.: The Laurent coefficients of the Hilbert series of a Gorenstein algebra. Exp. Math. 30, 56–75 (2021)....
    • Herbig, H.C., Herden, D., Seaton, C.: On compositions with x^{2}/(1-x). Proc. Am. Math. Soc. 143, 4583–4596 (2015)
    • Herbig, H.C., Iyengar, S.B., Pflaum, M.J.: On the existence of star products on quotient spaces of linear Hamiltonian torus actions. Lett....
    • Herbig, H.C., Lawler, E., Seaton, C.: Constructing symplectomorphisms between symplectic torus quotients. Beitr. Algebra Geom. 61, 581–604...
    • Herbig, H.C., Schwarz, G.W.: The Koszul complex of a moment map. J. Symplectic Geom. 11, 497–508 (2013). http://projecteuclid.org.sire.ub.edu/getRecord?id=euclid.jsg/1384282847
    • Herbig, H.C., Schwarz, G.W., Seaton, C.: Symplectic quotients have symplectic singularities. Compos. Math. 156(3), 613–646 (2020)
    • Herbig, H.C., Seaton, C.: The Hilbert series of a linear symplectic circle quotient. Exp. Math. 23, 46–65 (2014)
    • Herbig, H.C., Seaton, C.: An impossibility theorem for linear symplectic circle quotients. Rep. Math. Phys. 75, 303–331 (2015)
    • Hilbert, D.: Ueber die vollen Invariantensysteme. Math. Ann. 42(3), 313–373 (1893)
    • Ilash, N.: The Poincaré series for the algebras of joint invariants and covariants of n linear forms. C. R. Acad. Bulgare Sci. 68(6), 715–724...
    • Ilash, N.: Poincaré series for the algebras of joint invariants and covariants of n quadratic forms. Carpathian Math. Publ. 9(1), 57–62 (2017)....
    • Littelmann, P., Procesi, C.: On the Poincaré series of the invariants of binary forms. J. Algebra 133(2), 490–499 (1990)
    • Newman, M.: The Smith normal form. In: Proceedings of the Fifth Conference of the International Linear Algebra Society (Atlanta, GA, 1995),...
    • Popov, V.L.: Groups, generators, syzygies, and orbits in invariant theory, Translations of Mathematical Monographs, vol. 100. American Mathematical...
    • Popov, V.L., Vinberg, È.B.: Invariant theory. In: Algebraic Geometry IV. Encyclopaedia of Mathematical Sciences, vol. 55, pp. 123–278. Springer-Verlag,...
    • Sjamaar, R., Lerman, E.: Stratified symplectic spaces and reduction. Ann. Math. 134, 375–422 (1991). https://doi-org.sire.ub.edu/10.2307/2944350
    • Smith, H.J.S.: On systems of linear indeterminate equations and congruences. Philos. Trans. Roy. Soc. Lond. 151, 293–326 (1861). https://www-jstor-org.sire.ub.edu/stable/108738
    • Springer, T.A.: Invariant Theory. Lecture Notes in Mathematics, vol. 585. Springer-Verlag, Berlin-New York (1977)
    • Springer, T.A.: On the invariant theory of SU_{2}. Nederl. Akad. Wetensch. Indag. Math. 42(3), 339–345 (1980)
    • Stanley, R.P.: Hilbert functions of graded algebras. Adv. Math. 28(1), 57–83 (1978)
    • Sturmfels, B.: Algorithms in Invariant Theory. Texts and Monographs in Symbolic Computation, Springer-Verlag, Vienna (1993)
    • Sylvester, J.J., Franklin, F.: Tables of the generating functions and Groundforms for the Binary Quantics of the first ten orders. Amer. J....
    • Wehlau, D.L.: A proof of the Popov conjecture for tori. Proc. Am. Math. Soc. 114, 839–845 (1992). https://doi-org.sire.ub.edu/10.2307/2159414
    • Wolfram Research, Inc.: Mathematica Edition: Version 12.1 (2020). http://www.wolfram.com/mathematica/

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno