Ir al contenido

Documat


Point line geometry in the tropical plane

  • Tewari, Ayush Kumar [1]
    1. [1] Oberwolfach Leibniz Fellow, MFO Oberwolfach, Oberwolfach, Germany
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 74, Fasc. 2, 2023, págs. 391-414
  • Idioma: inglés
  • DOI: 10.1007/s13348-022-00354-9
  • Enlaces
  • Resumen
    • We study the classical result by Bruijn and Erdős regarding the bound on the number of lines determined by a n-point configuration in the plane, and in the light of the recently proven Tropical Sylvester-Gallai theorem, come up with a tropical version of the above-mentioned result. In this work, we introduce stable tropical lines, which help in answering questions pertaining to incidence geometry in the tropical plane. Projective duality in the tropical plane helps in translating the question for stable lines to stable intersections that have been previously studied in depth. Invoking duality between Newton subdivisions and line arrangements, we are able to classify stable intersections with shapes of cells in subdivisions, and this ultimately helps us in coming up with a bound. In this process, we also encounter various unique properties of linear Newton subdivisions which are dual to tropical line arrangements.

  • Referencias bibliográficas
    • Ardila, F., Develin, M.: Tropical hyperplane arrangements and oriented matroids. Mathematische Zeitschrift 262(4), 795–816 (2009)
    • Batten, L.M.: Combinatorics of Finite Geometries. Cambridge University Press, Cambridge (1997)
    • Brandt, M., Jones, M., Lee, C., Ranganathan, D.: Incidence geometry and universality in the tropical plane. J. Comb. Theory Series A 159,...
    • Brugallé, E., Itenberg, I., Mikhalkin, G., Shaw, K.: Brief introduction to tropical geometry. arXiv preprint arXiv:1502.05950 (2015)
    • de Bruijn, N.G., Erdös, P.: On a combinatorial problem. Proceedings of the Section of Sciences of the Koninklijke Nederlandse Akademie van...
    • Erdös, P., Mullin, R.C., Sós, V.T., Stinson, D.R.: Finite linear spaces and projective planes. Discr. Math. 47, 49–62 (1983)
    • Huh, J., Wang, B., et al.: Enumeration of points, lines, planes, etc. Acta Math. 218(2), 297–317 (2017)
    • Jell, P., Markwig, H., Rincón, F., Schröter, B.: Tropical lines in planes and beyond. arXiv preprint arXiv:2003.02660 (2020)
    • Joswig, M.: Essentials of tropical combinatorics. Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2022). Web...
    • Joswig, M., Panizzut, M., Sturmfels, B.: The schläfli fan. Discr. Comput. Geom. 64(2), 355–381 (2020)
    • Maclagan, D., Sturmfels, B.: Introduction to Tropical Geometry, vol. 161. American Mathematical Soc, Providence, Rhode Island (2015)
    • Panizzut, M., Vigeland, M.D.: Tropical lines on cubic surfaces. arXiv preprint arXiv:0708.3847 (2007)
    • Richter-Gebert, J., Sturmfels, B., Theobald, T.: First steps in tropical geometry. Contemp. Math. 377, 289–318 (2005)
    • Tabera, L.F.: Tropical constructive Pappus’ theorem. Int. Math. Res. Notices 2005(39), 2373–2389 (2005)
    • Tabera, L.F., et al.: Tropical plane geometric constructions: a transfer technique in tropical geometry. Revista Matemática Iberoamericana...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno