Ir al contenido

Documat


Resumen de Sumsets and Veronese varieties

Liena Colarte Gómez, Joan Elías García Árbol académico, Rosa María Miró-Roig Árbol académico

  • In this paper, to any subset \mathcal {A}\subset \mathbb {Z}^{n} we explicitly associate a unique monomial projection Y_{n,d_{\mathcal {A}}} of a Veronese variety, whose Hilbert function coincides with the cardinality of the t-fold sumsets t\mathcal {A}. This link allows us to tackle the classical problem of determining the polynomial p_{\mathcal {A}} \in \mathbb {Q}[t] such that |t\mathcal {A}| = p_{\mathcal {A}}(t) for all t \ge t_0 and the minimum integer n_0(\mathcal {A}) \le t_0 for which this condition is satisfied, i.e. the so-called phase transition of |t\mathcal {A}|. We use the Castelnuovo–Mumford regularity and the geometry of Y_{n,d_{\mathcal {A}}} to describe the polynomial p_{\mathcal {A}}(t) and to derive new bounds for n_0(\mathcal {A}) under some technical assumptions on the convex hull of \mathcal {A}; and vice versa we apply the theory of sumsets to obtain geometric information of the varieties Y_{n,d_{\mathcal {A}}}.


Fundación Dialnet

Mi Documat