Ir al contenido

Documat


Rigid Gorenstein toric Fano varieties arising from directed graphs

  • Kara, Selvi [1] ; Portakal, Irem [3] ; Tsuchiya, Akiyoshi [2]
    1. [1] University of Utah

      University of Utah

      Estados Unidos

    2. [2] University of Tokyo

      University of Tokyo

      Japón

    3. [3] Max-Planck-Institut für Mathematik in den Naturwissenschaften, Inselstrasse 22, 04103, Leipzig, Germany
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 74, Fasc. 2, 2023, págs. 333-351
  • Idioma: inglés
  • DOI: 10.1007/s13348-022-00350-z
  • Enlaces
  • Resumen
    • A directed edge polytope {\mathcal {A}}_G is a lattice polytope arising from root system A_n and a finite directed graph G. If every directed edge of G belongs to a directed cycle in G, then {\mathcal {A}}_G is terminal and reflexive, that is, one can associate this polytope to a Gorenstein toric Fano variety X_G with terminal singularities. It is shown by Totaro that a toric Fano variety which is smooth in codimension 2 and {\mathbb {Q}}-factorial in codimension 3 is rigid. In the present paper, we classify all directed graphs G such that X_G is a toric Fano variety which is smooth in codimension 2 and {\mathbb {Q}}-factorial in codimension 3.

  • Referencias bibliográficas
    • Altmann, K.: Computation of the vector space \cal{T}^1 for affine toric varieties. J. Pure Appl. Algebra 95(3), 239–259 (1994)
    • Altmann, K.: Minkowski sums and homogeneous deformations of toric varieties. Tohoku Math. J. 47(2), 151–184 (1995)
    • Batyrev, V.V.: Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties. J. Algebraic Geom. 168, 493–535 (1995)
    • Bien, F., Brion, M.: Automorphisms and local rigidity of regular varieties. Compos. Math. 104(1), 1–26 (1996)
    • Bigdeli, M., Herzog, J., Lu, D.: Toric rings, inseparability and rigidity. In: Ene, V., Miller, E. (eds.) Multigraded Algebra and Applications....
    • Bumm, D., Choi, K.K., Kurlberg, P., Vaaler, J.: A local Riemann hypothesis. Math. Z. 233, 1–19 (2000)
    • Chen, T., Davis, R., Mehta, D.: Counting equilibria of the Kuramoto model using birationally invariant intersection index. SIAM J. Appl. Algebra...
    • Cox, D., Little, J., Schenck, H.: Toric Varieties, volume 124 of Graduate Texts in Mathematics. American Mathematical Society, 2011
    • D’Alì, A., Delucchi, E., Michałek, M.: Many faces of symmetric edge polytopes. arXiv preprint arXiv:1910.05193, 2019
    • de Fernex, T., Hacon, C.D.: Deformations of canonical pairs and Fano varieties. J. Reine Angew. Math. 651, 97–126 (2011)
    • Higashitani, A.: Smooth Fano polytopes arising from finite directed graphs. Kyoto J. Math. 55(3), 579–592 (2015)
    • Higashitani, A., Jochemko, K., Michałek, M.: Arithmetic aspects of symmetric edge polytopes. Mathematika 65(3), 763–784 (2019)
    • Kleppe, J.O.: Deformations of graded algebras. Mathematica Scandinavica 45, 205–231 (1979)
    • Kuramoto, Y.: Self-entrainment of a population of coupled non-linear oscillators. In International symposium on mathematical problems in theoretical...
    • Matsui, T., Higashitani, A., Nagazawa, Y., Ohsugi, H., Hibi, T.: Roots of Ehrhart polynomials arising from graphs. J. Algebraic Combin. 34(4),...
    • Nill, B.: Gorenstein toric fano varieties. Manuscripta Math. 116, 183–210 (2005)
    • Ohsugi, H., Hibi, T.: Hamiltonian tournaments and gorenstein rings. European J. Combin. 23(4), 463–470 (2002)
    • Ohsugi, H., Hibi, T.: Centrally symmetric configurations of integer matrices. Nagoya Math. J. 216, 153–170 (2014)
    • Ohsugi, H., Tsuchiya, A.: The h^*-polynomials of locally anti-blocking lattice polytopes and their \gamma-positivity. Discrete Compute. Geom....
    • Ohsugi, H., Tsuchiya, A.: Symmetric edge polytopes and matching generating polynomials. Combinatorial Theory 1, 9 (2021)
    • Portakal, I.: On rigidity of toric varieties arising from bipartite graphs. J. Algebra 569, 784–822 (2021)
    • Rodriguez-Vallegas, F.: On the zeros of certain polynomials. Proc. Amer. Math. Soc. 130, 2251–2254 (2002)
    • Setiabrata, L.: Faces of root polytopes. SIAM J. Discrete Maths 35(3), 2093–2114 (2021)
    • Totaro, B.: Jumping of the nef cone for fano varieties. J. Algebraic Geom. 21, 375–396 (2012)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno