Ir al contenido

Documat


Motivic integration and birational invariance of BCOV invariants

  • Lie Fu [1] ; Yeping Zhang [2]
    1. [1] University of Strasbourg

      University of Strasbourg

      Arrondissement de Strasbourg-Ville, Francia

    2. [2] Changsha University of Science and Technology

      Changsha University of Science and Technology

      China

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 29, Nº. 2, 2023
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Bershadsky, Cecotti, Ooguri and Vafa constructed a real valued invariant for Calabi–Yau manifolds, which is now called the BCOV torsion. Based on it, a metric-independent invariant, called BCOV invariant, was constructed by Fang–Lu–Yoshikawa and Eriksson–Freixas i Montplet–Mourougane. The BCOV invariant is conjecturally related to the Gromov–Witten theory via mirror symmetry. Based upon previous work of the second author, we prove the conjecture that birational Calabi–Yau manifolds have the same BCOV invariant. We also extend the construction of the BCOV invariant to Calabi–Yau varieties with Kawamata log terminal singularities, and prove its birational invariance for Calabi–Yau varieties with canonical singularities. We provide an interpretation of our construction using the theory of motivic integration.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno