Cambridge District, Reino Unido
Reino Unido
We discuss the symplectic topology of the Stein manifolds obtained by plumbing two 3-dimensional spheres along a circle. These spaces are related, at a derived level and working in a characteristic determined by the specific geometry, to local threefolds which contain two floppable (−1,−1) -curves meeting at a point. Using contraction algebras we classify spherical objects on the B-side, and derive topological consequences including a complete description of the homology classes realised by graded exact Lagrangians.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados