Ir al contenido

Documat


Singular modules for affine Lie algebras, and applications to irregular WZNW conformal blocks

  • Giovanni Felder [1] ; Gabriele Rembado [2]
    1. [1] Swiss Federal Institute of Technology in Zurich

      Swiss Federal Institute of Technology in Zurich

      Zürich, Suiza

    2. [2] Hausdorff Centre for Mathematics, Germany
  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 29, Nº. 1, 2023
  • Idioma: inglés
  • DOI: 10.1007/s00029-022-00821-y
  • Enlaces
  • Resumen
    • We give a mathematical definition of irregular conformal blocks in the genus-zero WZNW model for any simple Lie algebra, using coinvariants of modules for affine Lie algebras whose parameters match up with those of moduli spaces of irregular meromorphic connections: the open de Rham spaces. The Segal–Sugawara representation of the Virasoro algebra is used to show that the spaces of irregular conformal blocks assemble into a flat vector bundle over the space of isomonodromy times à la Klarès, and we provide a universal version of the resulting flat connection generalising the irregular KZ connection of Reshetikhin and the dynamical KZ connection of Felder–Markov–Tarasov–Varchenko.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno