Ir al contenido

Documat


Generalization of Some Bounds containing Entropies on Time Scales

  • Muhammad Bilal [1] ; Khuram Ali Khan [1] ; Ammara Nosheen [1] ; Josip Pecaric [2]
    1. [1] University of Sargodha

      University of Sargodha

      Pakistán

    2. [2] Croatian Academy of Science and Arts
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 22, Nº 2, 2023
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, weighted Jensen’s inequality for diamond integrals is utilized to get some new inequalities containing entropies. Shanon entropy, triangular discrimination, Jeffreys distance, Bhattacharyya coefficient, Hellinger discrimination and Rényi entropy are introduced and their bounds are derived using diamond–integral formalism. We discussed the classical, discrete and q-analogue of obtained results by restricting the time scale to R, hZ for h > 0 and qN0 for q > 1. For different divergence measures, the entropic bounds are also deduced. Furthermore, resultant inequalities are also discussed considering the Zipf law and the Zipf–Mandelbrot law to establish some new inequalities for isolated points. The new established results are the generalizations of results proved in Ansari et al. (J Inequal Appl 2021:1–21, 2021), Horváth et al. (Bull Malays Math Sci Soc 42:933-946, 2019), Mati´c, Pearce and Peˇcari´c (Shannon’s and related inequalities in information theory. Survey on classical inequalities, Springer, Dordrech, 2000).

  • Referencias bibliográficas
    • 1. Ansari, I., Khan, K.A., Nosheen, A., Peˇcari´c, D., Peˇcari´c, J.: Shannon type inequalities via time scales theory. Adv. Differ. Equ....
    • 2. Ansari, I., Khan, K.A., Nosheen, A., Peˇcari´c, D., Peˇcari´c, J.: Some inequalities for Csiszár divergence via theory of time scales....
    • 3. Ansari, I., Khan, K.A., Nosheen, A., Peˇcari´c, D., Peˇcari´c, J.: Estimation of divergence measures via weighted Jensen inequality on...
    • 4. Ansari, I., Khan, K.A., Nosheen, A., Peˇcari´c, D., Peˇcari´c, J.: Estimation of divergence measures on time scales via Taylor’s polynomial...
    • 5. Ansari, I., Khan, K.A., Nosheen, A., Peˇcari´c, D., Peˇcari´c, J.: Estimation of Divergences on time scales via Green function and Fink’s...
    • 6. Ansari, I., Khan, K.A., Nosheen, A., Peˇcari´c, D., Peˇcari´c, J.: New entropic bounds on time scales via Hermite interpolating polynomial....
    • 7. Anwar, M., Bibi, R., Bohner, M., Peˇcari´c, J.: Integral inequalities on time scales via the theory of isotonic linear functionals. Abstr....
    • 8. Bohner, M., Peterson, A.: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhäuser, Boston Inc., Boston (2001)
    • 9. da Cruz, A.M., Martins, N., Torres, D.F.: Symmetric differentiation on time scales. Appl. Math. Lett. 26(2), 264–269 (2013)
    • 10. Brito, A.M.C., Martins, N., Torres, D.F.M.: The diamond integrals on time scales. Bull. Malays. Math. Sci. Soc. 38, 1453–1462 (2015)
    • 11. Bibi, R., Nosheen, A., Peˇcari´c, J.: Generalization of Jensen-type linear functional on time scales via lidstone polynomia. Cogent Math....
    • 12. Bilal, M., Khan, K.A., Ahmad, H., Nosheen, A., Awan, K.M., Askar, S., Alharthi, M.: Some dynamic inequalities via diamond integrals for...
    • 13. Bohner, M., Nosheen, A., Peˇcari´c, J., Younus, A.: Some dynamic Hardy-type inequalities with Genral kernels. J. Math. Inequal. 8(1),...
    • 14. Burbea, I., Rao, C.R.: On the convexity of some divergence measures based on entropy functions. IEEE Trans. Inf. Theory 28, 489–495 (1982)
    • 15. Bhattacharyya, A.: On some analogues of the amount of information and their use in statistical estimation. Sankhya Indian J. Stat. (1933–1960)...
    • 16. Csiszár, I.: Information-type measures of difference of probability distributions and indirect observations. Studia Sci. Math. Hung. 2,...
    • 17. Chakrabarti, C., De, K.: Boltzmann-Gibbs entropy: axiomatic characterization and application. Int. J. Math. Math. Sci. 23(4), 243–251...
    • 18. Cho, M.Y.J., Mati´c Peˇcari´c, J.: Two mappings in connection to Jensens inequality. Panam. Math. J. 12(1), 43–50 (2002)
    • 19. Csiszár, I.: Eine informationstheoretische ungleichung und ihre anwendung auf den bewis der ergodizitat von markhoffschen ketten. Publ....
    • 20. Diodato, V.: Dictionary of Bibliometrics. Haworth Press, New York (1994)
    • 21. Frieden, B.R.: Image enhancement and restoration, Picture Processing and Digital Filtering. In: Huang, T. S. (eds). Springer, Berlin (1975)
    • 22. Gibbs, A.L.: On choosing and bounding probability metrics. Int. Stat. Rev. 70(3), 419–435 (2002)
    • 23. Guseinov, G.S.: Integration on time scales. J. Math. Anal. Appl. 285(1), 107–127 (2003)
    • 24. Horváth, L., Peˇcari´c, D., Peˇcari´c, J.: Estimations of f - and Rényi divergences by using a cyclic refinement of the Jensen’s inequality....
    • 25. Hellinger, E.: Neue Begründung der Theorie quadratischer Formen von unendlichvielen Veranderlichen. Journal für die Reine und Angewandte...
    • 26. Jeffreys, H.: An invariant form for the prior probability in estimation problems. Proc. R. Soc. Lond. Ser. A. 186, 453–461 (1946)
    • 27. Justice, J.H. (ed.): Cambridge University Press, Cambridge (1986)
    • 28. Kapur, J.N.: On the roles of maximum entropy and minimum discrimination information principles in statistics. In: Technical Address of...
    • 29. Khan, M.A., Anwar, M., Jakšeti´c, J., Peˇcari´c, J.: On some improvements of the Jensen inequality with some applications. J. Inequal....
    • 30. Leahy, R.M., Goutis, C.E.: An optimal technique for constraint-based image restoration and mensuration. IEEE Trans. Acoust. Speech Signal...
    • 31. Miki´c, R., Peˇcari´c, J.: Jensen-type inequalities on time scales for n-convex functions. Commun. Math. Anal. 21(2), 46–67 (2018)
    • 32. Mati´c, M., Pearce, C.E.M., Peˇcari´c, J.: Shannon’s and Related Inequalities in Information Theory. Survey on Classical Inequalities....
    • 33. Mandelbrot, B.: Information theory and psycholinguistics a theory of words frequencies. In: Lazafeld, P., Henry, N. (eds.) Reading in...
    • 34. Mansourvar, Z.: The φ-divergence family of measures based on quantile function. Statistics 56(5), 1113–1132 (2022)
    • 35. Rogers Sheng, Q.: Notes on the diamond-α dynamic derivative on time scales. J. Math. Anal. Appl. 326(1), 228–241 (2007)
    • 36. ROYDEN, H.L.: Real Analysis, 3rd edn. Macmillan Publishing Company, New York (1988)
    • 37. Shannon, C.E.: A mathematical theory of communication. Bull. Sept. Tech. 12, 370–423 (1948)
    • 38. Sun, Y.G., Hassan, T.: Some nonlinear dynamic integral inequalities on time scales. Appl. Math. Comput. 220(4), 221–225 (2013)
    • 39. Smoljak Kalamir, K.: New diamond-α Steffensen-type inequalities for convex functions over general time scale measure spaces. Axioms 2022(11),...
    • 40. Tuna, A., Kutukcu, S.: Some integral inequalities on time scales. Appl. Math. Mech. 29(1), 23–29 (2008)
    • 41. Wong, F., Yeh, C., Lian, W.: An extension of Jensen’s inequality on time scales. Adv. Dyn. Syst. Appl. 2(2), 113–120 (2006)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno