Ir al contenido

Documat


Strong Pairs of Periodic Segments

  • Klaudiusz Wójcik [1]
    1. [1] Jagiellonian University

      Jagiellonian University

      Kraków, Polonia

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 22, Nº 2, 2023
  • Idioma: inglés
  • Enlaces
  • Resumen
    • We introduce the notion of a strong pair of periodic segments over [0, T ] and we show its applications in detecting chaotic dynamics. We prove a various number of fixed point index formulas concerning periodic points of the Poincaré map.

  • Referencias bibliográficas
    • 1. Conley, C.: Isolated Invariant Sets and the Morse Index, CBMS Regional Conference Series in Mathematics, vol. 38. Amer. Math. Soc, Providence,...
    • 2. Conley, C., Easton, R.: Isolated invariant sets and isolating blocks. Trans. Amer. Math. Soc. 158, 35–61 (1971)
    • 3. Devaney, R.L.: An Introduction to Chaotic Dynamical Systems. Addison-Wesley, Menlo Park (1985)
    • 4. Dold, A.: Lectures on Algebraic Topology. Springer-Verlag, Berlin (1980)
    • 5. Jezierski, J., Marzantowicz, W.: Homotopy Methods in Topological Fixed and Periodic Point Theory, Springer, (2006)
    • 6. Mrozek, M.: The method of topological sections in rigorous numerics of dynamical systems. Can. Appl. Math. Q. 14, 209–222 (2006)
    • 7. Mrozek, M., Srzednicki, R.: Topological approach to rigorous numerics of chaotic dynamical systems with strong expansion of error bound....
    • 8. Oprocha, P., Wilczy ´nski, P.: Distributional chaos via isolating segments. Discrete and Continuous Dynamical Systems Series B 8, 347–356...
    • 9. Sprott, J.C.: Elegant chaos. World Scientific, Algebraically Simple Chaotic Flows (2010)
    • 10. Srzednicki, R.: Periodic and bounded solutions in blocks for time-periodic nonautonomuous ordinary differential equations. Nonlinear Anal....
    • 11. Srzednicki, R.: Wa˙zewski Method and Conley Index, Handbook of Differential Equations: Ordinary Differential Equations, vol. 1, pp. 591–684....
    • 12. Srzednicki, R., Wójcik, K.: A geometric method for detecting chaotic dynamics. J. Diff. Eq. 135, 66–82 (1997)
    • 13. Srzednicki, R., Wójcik, K., Zgliczy ´nski, P.: Fixed point results based on Wa˙zewski method, pp. 903– 941. Kluwer, Handbook of Topological...
    • 14. Wa˙zewski, T.: Sur un principe topologique de l’examen de l’allure asymptotique des intégrales des équations différentielles ordinaires....
    • 15. Wa˙zewski, T.: Sur une méthode topologique de l’examen de l’allure asymptotique des intégrales des équations différentielles, Proceedings...
    • 16. Wójcik, K.: On Fixed Point Index Formula and its Applications in Dynamics. Adv. Nonl. Stud. 13, 279–287 (2013)
    • 17. Wójcik, K.: Relative Nielsen numbers, braids and periodic segments. Adv. Nonl. Stud. 17(3), 527–550 (2017)
    • 18. Wójcik, K., Zgliczy ´nski, P.: Isolating segments, fixed point index and symbolic dynamics. J. Diff. Eq. 161, 245–288 (2000)
    • 19. Wójcik, K., Zgliczy ´nski, P.: Isolating segments, fixed point index and symbolic dynamics: III. Applications. J. Diff. Eq. 183, 262–278...
    • 20. Zgliczy ´nski, P.: Hyperbolicity and averaging for the Srzednicki-Wójcik equation. J. Diff. Eq. 262, 1931–1955 (2017)
    • 21. Zhao, X.: Relative Nielsen theory, pp. 659–684. Kluwer, Handbookof Topological Fixed Point Theory (2004)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno