Ir al contenido

Documat


Response Solutions of Degenerate Quasi-Periodic Systems Under Small Perturbations

  • Song Ni [1] ; Junxiang Xu [1]
    1. [1] Southeast University

      Southeast University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 22, Nº 2, 2023
  • Idioma: inglés
  • Enlaces
  • Resumen
    • This paper considers a class of n-dimensional degenerate systems with a quasi-periodic perturbation whose frequency is a diophantine vector. Assume that the unperturbed system has the origin as an equilibrium, which is degenerate at one direction. By KAM iteration, we prove that the perturbed quasi-periodic system has a small response solution for sufficiently small perturbations. The proof is based on the idea of reducibility and the KAM technique of introducing parameters.

  • Referencias bibliográficas
    • 1. Avila, A., Fayad, B., Krikorian, R.: A KAM schem for SL(2, R) cocycles with Liouvillean frequencies. Geom. Funct. Anal. 21(5), 1001–1019...
    • 2. Cheng, H., Rafael, W., De La LLave, R., Wang, F.: Response solutions to the quasi-periodically forced systems with degenerate equilibrium:...
    • 3. Corsi, L., Gentile, G.: Oscillator synchronisation under arbitrary quasi-periodic forcing. Commuun. Math. Phys. 316, 489–529 (2012)
    • 4. Corsi, L., Gentile, G.: Resonant motions in the presence of degeneracies for quasi-periodically perturbed systems. Ergod. Thoery Dyn. Syst....
    • 5. Corsi, L., Gentile, G.: Resonant tori of arbitrary codimension for quasi-periodically forced systems. Nonlinear Differ. Equ. Appl. 24(3),...
    • 6. Eliasson, L.H.: Almost reducibility of linear quasi-periodic systems. Proc. Sympos. Pure Math. 69, 679–705 (2001)
    • 7. Graff, S.M.: On the conservation of hyperbolic invariant tori for Hamiltonian systems. J. Differ. Equ. 15, 1–69 (1974)
    • 8. Her, H., You, J.: Full measure reducibility for generic one-parameter family of quasi-periodic linear systems. J. Dynam. Differ. Equ. 20,...
    • 9. Hu, S.-Q., Liu, B.: Completely degenerate lower-dimensional invariant tori for Hamiltonian system. J. Differ. Equ. 266(11), 7459–7480 (2019)
    • 10. Hou, X., You, J.: Almost reducibility and non-perturbative reducibility of quasi-periodic linear systems. Invent. Math. 190(1), 209–260...
    • 11. Jorba, A., Simó, C.: On the reducibility of linear differential equations with quasi-periodic coefficients. J. Differ. Equ. 98, 111–124...
    • 12. Jorba, A., Simó, C.: On quasi-periodic perturbations of elliptic equilibrium points. SIAM J. Math. Anal. 27(6), 1704–1737 (1996)
    • 13. Johnson, R.A., Sell, G.R.: Smoothness of spectral subbundles and reducibility of quasi-periodic linear differential systems. J. Differ....
    • 14. Lou, Z., Geng, J.: Quasi-periodic response solutions in forced reversible systems with Liouvillean frequencies. J. Differ. Equ. 263, 3894–7480...
    • 15. Si, W., Si, J.: Construction of response solutions for two calsses of quasi-periodically forced fourdimensional nonlinear systems with...
    • 16. Si, W., Si, J.: Response solutions and quasi- periodic degenerate bifurcations for quasi-periodic forcing systems. Nonlinearity 31(6),...
    • 17. Wang, J., You, J., Zhou, Q.: Response solutions for quasi-periodically forced harmonic oscillators. Trans. Am. Math. Soc. 369(6), 4251–4274...
    • 18. Xu, J.: On quasi-periodic perturbations of hyperbolic-type degenerate equilibrium point of a class of planar systems. Discret. Contin....
    • 19. Xu, J., Jiang, S.: Reducibility for a class of nonlinear quasi-periodic differential equations with degenerate equilibrium point under...
    • 20. Xu, J., Li, Q., Wang, J.: Response solutions of 3-dimensional degenerate quasi-periodic systems with small parameter. J. Differ. Equ....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno