Ir al contenido

Documat


Expressions and Evolution of Traveling wave Solutions in a Generalized Two-Component Rotation b-Family System

  • Feiting Fan [2] ; Xingwu Chen [1]
    1. [1] Sichuan University

      Sichuan University

      China

    2. [2] Civil Aviation Flight University of China
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 22, Nº 2, 2023
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper we investigate traveling waves for a generalized two-component rotation b-family (R-b-family) system with b > 1. Based on qualitative theory and bifurcation method of dynamical systems, the traveling wave problem is converted into the dynamical analysis of the corresponding traveling wave system with 5 parameters and 2 distinct singular lines. We systematically analyze this traveling wave system with the help of the three-step method to obtain 6 bifurcation curves of its phase portraits, which enables us to draw all the phase portraits. Combining these phase portraits, we get that the R-b-family system has exactly 6 kinds of bounded traveling wave solutions and give all the explicit conditions for their existence as well as their expressions and coexistence. Finally, discussing dynamical behavior of these traveling waves, we not only provide the bifurcation wave velocities for solitary wave solutions of peak and valley type, for solitary cusp wave solutions of peak and valley type and for periodic cusp wave solutions of peak and valley type, respectively, but also find 3 other types of traveling wave evolution, namely kink wave bifurcation, solitary cusp bifurcation and periodic wave bifurcation.

  • Referencias bibliográficas
    • 1. Basu, B., Martin, C.I.: Resonant interactions of rotational water waves in the equatorial f -plane approximation. J. Math. Phys. 59, 103101...
    • 2. Camassa, R., Holm, D.D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71(11), 1661–1664 (1993)
    • 3. Chen, R.M., Fan, L., Gao, H., Liu, Y.: Breaking Waves And Solitary Waves To The Rotation-TwoComponent Camassa-Holm System. SIAM J. Math....
    • 4. Constantin, A., Escher, J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 181, 229–243 (1998)
    • 5. Constantin, A., Ivanov, R.I.: On an integrable two-component Camassa-Holm shallow water system. Phys. Lett. A 372, 7129–7132 (2008)
    • 6. Constantin, A., Ivanov, R.I.: Equatorial wave-current interactions. Commun. Math. Phys. 370, 1–48 (2019)
    • 7. Constantin, A., Lannes, D.: The hydrodynamical relevance of the Camassa-Holm and DegasperisProcesi equations. Arch. Ration. Mech. Anal....
    • 8. Cushman-Roisin, B., Beckers, J.M.: Introduction to geophysical fluid dynamics: physical and numerical aspects. Academic press (2011)
    • 9. Dai, H.H.: Exact travelling-wave solutions of an integrable equation arising in hyperelastic rods. Wave Motion 28(4), 367–381 (1998)
    • 10. Dullin, H.R., Gottwald, G.A., Holm, D.D.: An integrable shallow water equation with linear and nonlinear dispersion. Phys. Rev. Lett....
    • 11. Dullin, H.R., Gottwald, G.A., Holm, D.D.: Camassa-Holm, Korteweg-de Vries-5 and other asymptotically equivalent equations for shallow...
    • 12. Dullin, H.R., Gottwald, G.A., Holm, D.D.: On asymptotically equivalent shallow water wave equations. Physica D 190(1–2), 1–14 (2004)
    • 13. Fan, L., Gao, H., Liu, Y.: On the rotation-two-component Camassa-Holm system modelling the equatorial water waves. Adv. Math. 291, 59–89...
    • 14. Fan, E.G., Yuen, M.: Peakon weak solutions for the rotation-two-component Camassa-Holm system. Appl. Math. Lett. 97, 53–59 (2019)
    • 15. Fuchssteiner, B., Fokas, A.S.: Symplectic structures, their Bäcklund transformations and hereditary symmetries. Physica D. 4(1), 47–66...
    • 16. Genoud, F., Henry, D.: Instability of equatorial water waves with an underlying current. J. Math. Fluid Mech. 16, 661–667 (2014)
    • 17. Guan, C., Yin, Z.: Global existence and blow-up phenomena for an integrable two-component CamassaHolm shallow water system. J. Differential...
    • 18. Guo, Z., Cao, Y., Zhu, M.: Blowup of Solutions to the Two-Component Dullin-Gottwald-Holm System. Bull. Malays. Math. Sci. Soc. 43, 201–209...
    • 19. Guo, F., Gao, H., Liu, Y.: On the wave-breaking phenomena for the two-component Dullin-GottwaldHolm system. J. Lond. Math. Soc. 86(3),...
    • 20. Guo, F., Wang, R.: On the persistence and unique continuation properties for an integrable twocomponent Dullin-Gottwald-Holm system. Nonlinear...
    • 21. Han, Y., Guo, F., Gao, H.: On solitary waves and wave-breaking phenomena for a generalized twocomponent integrable Dullin-Gottwald-Holm...
    • 22. Henry, D., Matioc, A.-V.: On the existence of equatorial wind waves. Nonlinear Anal. 101, 113–123 (2014)
    • 23. Henry, D., Matioc, A.-V.: On the symmetry of steady equatorial wind waves. Nonlinear Anal. Real World Appl. 18, 50–56 (2014)
    • 24. Holmes, J., Thompson, R.C., Ti ˘glay, F.: Nonuniform dependence of the R-b-family system in Besov spaces. ZAMM-Z. Angew. Math. Me. 101(8),...
    • 25. Ivanov, R.I.: Extended Camassa-Holm hierarchy and conserved quantities. Zeitschrift für Naturforschung A 61(3–4), 133–138 (2006)
    • 26. Ivanov, R.I.: Two-component integrable systems modelling shallow water waves: The constant vorticity case. Wave Motion 46, 389–396 (2009)
    • 27. Izumo, T.: The equatorial undercurrent, meridional overturning circulation, and their roles in mass and heat exchanges during the events...
    • 28. Johnson, R.S.: The Camassa-Holm equation for water waves moving over a shear flow. Fluid Dynam. Res. 33(1–2), 97–111 (2003)
    • 29. Li, J.B., Chen, G.R., Song, J.: Completing the study of traveling wave solutions for three two-component shallow water wave models. Int....
    • 30. Li, J.B., Chen, G.R., Zhou, Y.: Exact Peakon, Periodic Peakon and Pseudo-Peakon Solutions of the Rotation-Two-Component Camassa-Holm System....
    • 31. Li, J.B., Qiao, Z.J.: Bifurcations and exact traveling wave solutions of the generalized two-component Camassa-Holm equation. Int. J....
    • 32. Liu, J.: Blow-up phenomena for the rotation-two-component Camassa-Holm system. Appl. Anal. 100(3), 574–588 (2021)
    • 33. Liu, X., Yin, Z.: Local well-posedness and stability of solitary waves for the two-component DullinGottwald-Holm system. Nonlinear Anal....
    • 34. McKean, H.P.: Breakdown of a shallow water equation. Asian J. Math. 2(4), 867–874 (1998)
    • 35. Moon, B.: On the wave-breaking phenomena and global existence for the periodic rotation-twocomponent Camassa-Holm system. J. Math. Anal....
    • 36. Mustafa, O.G.: On smooth traveling waves of an integrable two-component Camassa-Holm shallow water system. Wave Motion 46, 397–402 (2009)
    • 37. Olver, P.J., Rosenau, P.: Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support. Phys. Rev. E 53(2),...
    • 38. Philander, S.G.H.: The equatorial undercurrent revisited. Annu. Rev. Earth Planet. Sci. 8, 191–204 (1980)
    • 39. Wang, Y., Zhu, M.: Blow-up issues for a two-component system modelling water waves with constant vorticity. Nonlinear Anal. 172, 163–179...
    • 40. Whitham, G.B.: Linear and nonlinear waves. John Wiley & Sons (2011)
    • 41. Yang, H.: Non-uniform continuity of the solution map to the rotation-two-component Camassa-Holm system. J. Differential Equations 268(8),...
    • 42. Yang, M., Li, Y., Qiao, Z.J.: Persistence properties and wave-breaking criteria for a generalized twocomponent rotational b-family system....
    • 43. Yang, S., Xu, T.: Local-in-space blow-up and symmetric waves for a generalized two-component Camassa-Holm system. Appl. Math. Comput....
    • 44. Zhang, Y.: Wave breaking and global existence for the periodic rotation-Camassa-Holm system. Discrete Contin. Dyn. Syst. 37(4), 2243–2257...
    • 45. Zhang, L., Liu, B.: Well-posedness, blow-up criteria and Gevrey regularity for a rotation-twocomponent Camassa-Holm system. Discrete Contin....
    • 46. Zhong, J., Deng, S.F.: Traveling Wave Solutions of a Two-Component Dullin-Gottwald-Holm System. ASME J. Comput. Nonlinear Dyn. 12, 031006...
    • 47. Zhu, M., Wang, Y.: Blow-up of solutions to the rotation b-family system modeling equatorial water waves. Electronic J. Diff Eqs. 2018,...
    • 48. Zhu, M., Xu, J.: On the wave-breaking phenomena for the periodic two-component Dullin-GottwaldHolm system. J. Math. Anal. Appl. 391(2),...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno