Ir al contenido

Documat


A note on m-Zumkeller cordial labeling of graphs

  • Patodia, Harish [1] ; Saikia, Helen K.
    1. [1] Gauhati University

      Gauhati University

      India

  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 42, Nº. 1, 2023, págs. 65-84
  • Idioma: inglés
  • DOI: 10.22199/issn.0717-6279-5190
  • Enlaces
  • Resumen
    • Let G(V,E) be a graph. An m-Zumkeller cordial labeling of the graph G is defined by an injective function f:V -> N such that there exists an induced function f*:E -->{0,1} defined by f* (uv)=f(u).f(v) that satisfies the following conditions:i) For every uv in E, f*(uv)=  ii) |ef*(0)-ef*(1)|<=1where ef*(0) and ef*(1) denote the number of edges of the graph G having label 0 and 1 respectively under f*.In this paper we prove that there exist an m -Zumkeller cordial labeling of graphs viz., (i) paths (ii) cycles (iii) comb graphs (iv) ladder graphs (v) twig graphs (vi) helm graphs (vii) wheel graphs (viii) crown graphs (ix) star graphs.

  • Referencias bibliográficas
    • A. Rosa, On certain valuations of the vertices of a graph, Theory of graphs (International symposium, Rome, July 1966). New York: Gordon and...
    • B. J. Balamurugan, K. Thirusangu, D. G. Thomas, “k-Zumkeller Labeling for Twig Graphs”, Electronic Notes in Discrete Mathematics, vol. 48,...
    • B. J. Murali, K. Thirusangu, B. J. Balamurugan, “Zumkeller Cordial Labeling of Cycle Related Graphs”, International journal of Pure and Applied...
    • H. Patodia and H. K. Saikia, ”m-Zumkeller Graphs”, Advances in Mathematics: Scientific Journal, vol. 9, no. 7, pp. 4687-4694, 2020. doi: 10.37418/amsj.9.7.35
    • H. Patodia and H. K. Saikia, “On m-Zumkeller Numbers”, Bulletin of Calcutta Mathematical Society, vol. 113, no. 1, pp. 53-60, 2021.
    • M. Basher, “k-Zumkeller labeling of super subdivision of some graphs”, Journal of the Egyptian Mathematical Society, vol. 29, no. 12, 2021....
    • M. Basher, “k-Zumkeller labeling of the cartesian and tensor product of paths and cycles”, Journal of Intelligent and Fuzzy Systems, vol....
    • Yuejian Peng, K.P.S. Bhaskara Rao, “On Zumkeller Numbers”, Journal of Number Theory, vol. 133, pp. 1135-1155, 2013. doi: 10.1016/j.jnt.2012.09.020
    • Wikipedia, List of perfect numbers. [On line]. Available: https://en.m.Wikipedia.org/wiki/List_of_perfect_numbers

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno