Ir al contenido

Documat


Commuting graph of CA−groups

  • Torktaz, Mehdi [2] ; Ashrafi, Ali Reza [1]
    1. [1] University of Kashan

      University of Kashan

      Irán

    2. [2] Unversity of Kashan.
  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 42, Nº. 1, 2023, págs. 1-17
  • Idioma: inglés
  • DOI: 10.22199/issn.0717-6279-4488
  • Enlaces
  • Resumen
    • A group G is called a CA−group, if all the element centralizers of G are abelian and the commuting graph of G with respect to a subset A of G, denoted by Γ(G, A), is a simple undirected graph with vertex set A and two distinct vertices a and b are adjacent if and only if ab = ba. The aim of this paper is to generalize results of a recently published paper of F. Ali, M. Salman and S. Huang [On the commuting graph of dihedral group, Comm. Algebra 44 (6) (2016) 2389—2401] to the case that G is an CA−group.

  • Referencias bibliográficas
    • F. Ali, M. Salman, and S. Huang, “On the commuting graph of dihedral group”, Communications in Algebra, vol. 44, no. 6, pp. 2389–2401, 2016....
    • N. Biggs, Algebraic Graph Theory, 2nd ed. Cambridge University Press, Cambridge, 1993.
    • G. Chartrand and P. Zhang, Introduction to Graph Theory, McGraw-Hill Companies Inc, New York, 2006.
    • B. Fischer, “Finite groups generated by 3-transpositions. I”, Inventiones Mathematicae, vol. 13, no. 3, pp. 232–246, 1971. https://doi.org/10.1007/bf01404633
    • M. Giudici and C. Parker, “There is no upper bound for the diameter of the commuting graph of a finite group”, Journal of Combinatorial Theory,...
    • M. Giudici and A. Pope, “On bounding the diameter of the commuting graph of a group”, Journal of Group Theory, vol. 17, no. 1, 2014. https://doi.org/10.1515/jgt-2013-0023
    • M. Hormozi and K. Rodtes, “Symmetry classes of tensors associated with the semi-dihedral groups SD8n”, Colloquium Mathematicum, vol. 131,...
    • A. Iranmanesh and A. Jafarzadeh, “On the commuting graph associated with the symmetric and alternating groups”, Journal of Algebra and Its...
    • G. James and M. Liebeck, Representations and Characters of Groups, 2nd ed., Cambridge University Press, New York, 2001.
    • M. Mirzargar and A. R. Ashrafi, “Some distance-based topological indices of a noncommuting graph”, Hacettepe Journal of Mathematics and Statistics,...
    • G. L. Morgan and C. W. Parker, “The diameter of the commuting graph of a finite group with Trivial Centre”, Journal of Algebra, vol. 393,...
    • B. H. Neumann, “A problem of Paul Erdös on groups”, Journal of the Australian Mathematical Society, vol. 21, no. 4, pp. 467–472, 1976. https://doi.org/10.1017/s1446788700019303
    • G. Sabidussi, “Graph derivatives”, Mathematische Zeitschrift, vol. 76, no. 1, pp. 385–401, 1961. https://doi.org/10.1007/bf01210984
    • M. Torktaz and A. R. Ashrafi, “Spectral properties of the commuting graphs of certain groups”, AKCE International Journal of Graphs and Combinatorics,...
    • The GAP Group, GAP, Groups, Algorithms and Programming, Version 4.7.5; 2014.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno