Ir al contenido

Documat


Predictors of the post-stroke status in the discharge from the hospital. Importance in nursing

  • Rodríguez Vico, Araceli [1] ; Sánchez Hernández, Fernando [1] ; López Mesonero, Luis [1] ; García Cenador, Begoña [1] ; Moreno García, María N. [1] Árbol académico
    1. [1] Universidad de Salamanca

      Universidad de Salamanca

      Salamanca, España

  • Localización: Enfermería global: revista electrónica trimestral de enfermería, ISSN-e 1695-6141, Vol. 22, Nº. 1, 2023 (Ejemplar dedicado a: #69 Enero), págs. 1-37
  • Idioma: inglés
  • DOI: 10.6018/eglobal.530591
  • Títulos paralelos:
    • Predictores del estado post-ictus en el alta hospitalaria. Importancia en enfermería
  • Enlaces
  • Resumen
    • español

      A menudo, por parte del paciente y de la familia, se solicita a los profesionales de enfermería que predigan los factores que influyen en el estado post-ictus. Se han realizado numerosos estudios para determinar los factores que influyen en el estado neurológico post-ictus en el momento del alta hospitalaria. Sin embargo, las técnicas de aprendizaje automático no se han utilizado para este propósito. Con el objetivo de obtener reglas de asociación del pronóstico neurológico, se ha llevado a cabo un doble análisis, tanto clínico como con técnicas de aprendizaje automático, de las posibles asociaciones de factores que influyen en el estado neurológico de los pacientes post-ictus. El algoritmo Apriori detectó varias reglas de asociación con alta confianza (≥ 95%), con el siguiente patrón: En pacientes en el rango de edad de 50-80 años, la asociación de un NIHSS entre 11 y 15 puntos (NIHSS intermedio/bajo), junto con la trombectomía, conduce a la recuperación ad integrum al alta. Con la técnica de remuestreo SMOTE, se alcanzó el 100% de confianza para la asociación de NIHSS elevado (>20) y afectación de las arterias carótida y basilar, con pronóstico nefasto (exitus). Estas reglas confirman, por primera vez con aprendizaje automático, la importancia de la asociación de algunos predictores, en el pronóstico post-ictus. El conocimiento por parte de las enfermeras de estas reglas puede mejorar los resultados del ictus. Adicionalmente, el papel de la enfermería en los programas de educación sobre los factores de riesgo, y pronóstico de un ictus se torna imprescindible.

    • English

      Nurses are often asked to predict factors that influence post-stroke outcome by the patient and family. Many studies have been carried out in order to determine the factors that influence the neurological status of the post-stroke patient at the moment of the discharge from the hospital. However, machine learning techniques have not been used for this purpose. Therefore, with the objective of obtaining association rules of neurological prognosis, a double analysis, both clinical and with machine learning techniques of the possible associations of factors that influence the neurological status of the post-stroke patients has been carried out. The Apriori algorithm detected several association rules with high confidence (≥ 95%), from which the following pattern: In patients in the age range of 50-80 years, the association of a NIHSS between 11 and 15 points (intermediate/low NIHSS), along with thrombectomy, leads to recovery ad integrum at discharge. With the SMOTE resampling technique, the 100% confidence was reached for the association of high NIHSS (>20) and involvement of the carotid and basilar arteries, with a dire prognosis (exitus). These rules confirm, for the first time with machine learning, the importance of the association of some predictors, in the post-stroke prognosis. The knowledge by the nurses of these association rules can successfully improve stroke outcome. In addition, the role of nurses in education programs that teach knowledge of risk factors and stroke prognosis becomes essential.

  • Referencias bibliográficas
    • Powers WJ, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC, Becker K, Biller J, Brown M, Bart M. BM, Hoh B, Jauch EC, Kidwell CS, Leslie-Mazwi...
    • Green TL, McNair ND, Hinkle JL, Middleton S, Miller ET, Perrin S, Power M, Southerland AM, Summers DV; American Heart Association Stroke Nursing...
    • Xu ZH, Deng QW, Zhai Q, Zhang Q, Wang ZJ, Chen WX, Gu MM, Jiang T, Zhou JS, Zhang YD. Clinical significance of stroke nurse in patients with...
    • Stanfield LM. Clinical decision making in triage: an integrative review. J Emerg Nurs. 2015. 41(5): 396-403. Doi: 10.1016/j.jen.2015.02.003.
    • Xian Y, Xu H, Lytle B, Blevins J, Peterson ED, Hernandez AF, Smith EE, Saver JL, Messe SR, Paulsen M, Suter RE, Reeves MJ, Jauch EC, Schwamm...
    • Ragoschke A, Walter S. DAWN and DEFUSE-3 trials: is time still important? Radiologe. 2018. 58(1): 20-23. Doi: 10.1007/s00117-018-0406-4.
    • American Heart Association Scientific Statements. Updated guidance confirms crucial role of nurses for patients with acute ischemic stroke....
    • Loft MI, Poulsen I, Martinsen B, Mathiesen LL, Iversen HK, Esbensen BA. Strengthening nursing role and functions in stroke rehabilitation...
    • Libruder C, Ram A, Hershkovitz Y, Karolinsky D, Tanne D, Bornstein NM, Zucker I. The contribution of potentially modifiable risk factors to...
    • Murie-Fernández M, Marzo MM. Predictors of Neurological and Functional Recovery in Patients with Moderate to Severe Ischemic Stroke: The EPICA...
    • Dash S, Shakyawar SK, Sharma M, Kaushik S. Big data in healthcare: management, analysis and future prospects. J Big Data. 2019. 6: 54. Doi:...
    • Parisi L, Chandran NR, Manaog ML. Feature-driven machine learning to improve early diagnosis of Parkinson’s disease. Expert Syst. Appl. 2018....
    • González J, Martín, F, Sánchez M, Sánchez F, Moreno MN. “Multiclassifier systems for predicting neurological outcome of patients with severe...
    • Martín-González F, González-Robledo J, Sánchez-Hernández F, Moreno-García MN. Success/Failure Prediction of Noninvasive Mechanical Ventilation...
    • Kraiem MS, Sánchez-Hernández F, Moreno-García M. Selecting the suitable resampling strategy for imbalanced data classification regarding dataset...
    • Sánchez-Hernández F, Ballesteros-Herráez JC, Kraiem MS, Sánchez-Barba M, Moreno García MN. “Predictive Modeling of ICU Healthcare-Associated...
    • Zhang YQ, Liu AF, Man FY, Zhang YY, Li C, Liu YE, Zhou J, Zhang AP, Zhang YD, Lv J, Jiang WJ. MRI radiomic features-based machine learning...
    • Rodríguez V, Sánchez F. Nursing triage in acute stroke. Enfermería Global. 2021. 64:120-131. Doi: 106018/eglobal.465261.
    • Quinlan JR. C4.5: Programs for machine learning. Morgan Kaufmann. 1993. San Mateo, CA. USA.
    • Hall MA. Correlation-based feature selection for machine learning. Ph.D diss. Dept. of Computer Science. 1998. Waikato University.
    • Chawla NV, Bowyer K, Hall LO, KebelmeyerWP. SMOTE: synthetic minority over sampling technique. J. Artif Intell Res. 2002. 202(16): 321-357....
    • Zonneveld TP, Richard E, Vergouwen MD, Nederkoorn PJ, de Haan R, Roos YB, Kruyt ND. Blood pressure-lowering treatment for preventing recurrent...
    • Weiss J, Freeman M, Low A, Fu R, Kerfoot A, Paynter R, Motu'apuaka M, Kondo K, Kansagara D. Benefits and harms of intensive blood pressure...
    • Tun NN, Arunagirinathan G, Munshi SK, Pappachan JM. Diabetes mellitus and stroke: A clinical update. World J Diabetes. 2017. 8(6): 235-248....
    • Saeedi P, Salpea P, Karuranga S, Unwin N, Wild SH, Williams R. Mortality attributable to diabetes in 20–79 years old adults, 2019 estimates:...
    • Hackam DG, Hegele RA. Cholesterol Lowering and Prevention of Stroke. An Overview. Stroke. 2019. 50: 537-541. 2019. Doi: 10.1161/STROKEAHA.118.023167
    • Li YG, Lip GYH. Stroke prevention in atrial fibrillation: State of the art. Int J Cardiol. 2019. 287: 201-209. Doi: 10.1016/j.ijcard.2018.09.057.
    • Katsanos AH, Kamel H, Healey JS, Hart RG. Stroke Prevention in Atrial Fibrillation. Looking Forward. Circulation. 2020. 142: 238. Doi: 10.1161/CIRCULATIONAHA....
    • Albers GW, Marks MP, Kemp S, Christensen S, Tsai JP, Ortega-Gutierrez S, McTaggart RA, Torbey MT, Kim-Tenser M, Leslie-Mazwi T, Sarraj A,...
    • Gong L, Ruan C, Yang X, Lin W. Effects of Predictive Nursing Intervention among Patients with Acute Stroke. Ir J Public Health. 2021. 50(7):...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno